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1. Introduction

Let A be a positive hermitian operator acting on the states x of a linear space. For

any shift s ≥ 0, the equation

(A + s)x = b (1.1)

can be solved iteratively using the conjugate gradient (CG) algorithm (see ref. [1],

for example). With little further work, it is in fact possible to solve the equation for

several shifts s at once [2]. In this note the multi-shift algorithm is briefly derived

starting from the standard formulation of the CG algorithm.

2. Basic CG algorithm

For a given source b, the basic CG algorithm solves the linear system

Ax = b (2.1)

iteratively by generating a sequence

xk, pk, k = 1, 2, 3, . . . (2.2)

of approximate solutions xk and search directions pk recursively. In the course of

the recursion, the residues

rk = b − Axk (2.3)

1



are also computed.

The CG recursion starts from the initial values

x1 = 0, r1 = p1 = b. (2.4)

Once xk, rk and pk have been computed, the next approximate solution,

xk+1 = xk + αkpk, (2.5)

is obtained by calculating Apk and the coefficient

αk =
(rk, rk)

(pk, Apk)
, (2.6)

where the bracket (· , ·) denotes the scalar product in the space of states.

The residue of the new solution,

rk+1 = rk − αkApk, (2.7)

may then be calculated easily since Apk is already known. After that the coefficient

βk =
(rk+1, rk+1)

(rk, rk)
(2.8)

and the next search direction

pk+1 = rk+1 + βkpk (2.9)

can be computed, thus completing the recursion.

3. Shifted system

The CG algorithm can also be used to solve the shifted system

(A + s)x̂ = b (3.1)
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for given source b and shift s ≥ 0. Explicitly, the appoximate solutions x̂k, associated

residues r̂k and search directions p̂k are, in this case, generated through the recursion

x̂k+1 = x̂k + α̂kp̂k, α̂k =
(r̂k, r̂k)

(p̂k, (A + s)p̂k)
, (3.2)

r̂k+1 = r̂k − α̂k(A + s)p̂k, (3.3)

p̂k+1 = r̂k+1 + β̂kp̂k, β̂k =
(r̂k+1, r̂k+1)

(r̂k, r̂k)
. (3.4)

The initial values

x̂1 = 0, r̂1 = p̂1 = b, (3.5)

are the same as before.

Independently of s, the residues r̂1, . . . , r̂n span the same linear subspace of states.

The CG algorithm moreover has the feature of producing orthogonal residues, viz.

(r̂k, r̂l) = 0 for all k 6= l (3.6)

(for a proof of this property, see ref. [1] for example). In particular, r̂k is orthogonal

to the space spanned by r̂1, . . . , r̂k−1. Since this space does not depend on s, the

relation

r̂k = γ̂krk (3.7)

must hold for some complex (s-dependent) constants γ̂k.

It is possible to compute the coefficients γ̂k, α̂k and β̂k recursively together with

αk and βk. A little algebra shows that

γ̂1 = 1, γ̂2 =
1

1 + sα1

, α̂1 = γ̂2α1, β̂1 = γ̂2
2β1. (3.8)

The recursion for the higher-order coefficients may be derived by noting that

rk+1 = −αkArk + (1 + ωk)rk − ωkrk−1, ωk =
αkβk−1

αk−1

, (3.9)

r̂k+1 = −α̂kAr̂k + (1 + ω̂k − sα̂k)r̂k − ω̂kr̂k−1, ω̂k =
α̂kβ̂k−1

α̂k−1

, (3.10)
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for all k ≥ 2. After substitution of eq. (3.7) and division of eq. (3.10) by γ̂k+1, the

coefficients of Ark, rk and rk−1 in these two equations must match. The relations

α̂k = ρ̂kαk, (3.11)

ω̂k = −1 + ρ̂k(1 + ωk + sαk) (3.12)

ω̂k = ρ̂kρ̂k−1ωk (3.13)

are thus obtained, where the abbreviation

ρ̂k =
γ̂k+1

γ̂k

. (3.14)

was used.

Recalling the definition of ωk and ω̂k, the combination of eqs. (3.11) and (3.13)

leads to

β̂k = ρ̂2
k
βk, (3.15)

a relation that could also be directly obtained from the definitions (2.8) and (3.4)

of βk and β̂k. The combination of (3.12) and (3.13) moreover shows that

ρ̂k = {1 + sαk + (1 − ρ̂k−1)ωk}
−1, (3.16)

which allows the ratios ρ̂k to be computed recursively starting from ρ̂1 = (1+sα1)
−1.

4. Multi-shift algorithm

In this section, an implementation of the multi-shift CG algorithm is desribed that

solves two equations,

Ax = b, (4.1)

(A + s)x = b, (4.2)

simultaneously. Further systems with different shifts s can be easily included in this

algorithm by dublicating the steps required for the solution of the second equation.
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The algorithm updates the states xk, rk, pk and x̂k, p̂k recursively, starting from

x1 = x̂1 = 0, r1 = p1 = p̂1 = b. (4.3)

In the course of the recursion, the coefficients αk−1, βk−1 and γ̂k, ρ̂k−1 are updated

together with the states. Their values at the beginning of the recursion,

β0 = 0, α0 = γ̂1 = ρ̂0 = 1, (4.4)

are chosen so that the update rules specified below will give the correct sequence of

coefficients.

The step that leads from xk, . . . , p̂k to xk+1, . . . , p̂k+1 first requires the computa-

tion of Apk and of the coefficients

αk =
(rk, rk)

(pk, Apk)
, (4.5)

ωk =
αkβk−1

αk−1

, (4.6)

ρ̂k =
1

1 + sαk + (1 − ρ̂k−1)ωk

, (4.7)

α̂k = ρ̂kαk. (4.8)

One can then compute the linear combinations

xk+1 = xk + αkpk, (4.9)

x̂k+1 = x̂k + α̂kp̂k, (4.10)

rk+1 = rk − αkApk. (4.11)

At this point the coefficients

βk =
(rk+1, rk+1)

(rk, rk)
, (4.12)

β̂k = ρ̂2
k
βk, (4.13)

γ̂k+1 = ρ̂kγ̂k, (4.14)
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can be calculated and subsequently the linear combinations

pk+1 = rk+1 + βkpk, (4.15)

p̂k+1 = γ̂k+1rk+1 + β̂kp̂k, (4.16)

thus completing the step that leads from xk, . . . , p̂k to xk+1, . . . , p̂k+1.

When the residue

‖r̂k‖ = γ̂k‖rk‖ (4.17)

reaches the required tolerance, the recursion can be restricted to the basic system

until ‖rk‖ satisfies the convergence criterion for the latter. Note that γ̂k < 1 if s is

positive. The convergence rates are in fact determined by the condition number of

A + s and A, respectively, and are thus widely different if s much larger than the

lowest eigenvalue of A.
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