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Following our Lat-05 proceeding contribution, hep-lat/0509154, which will be re-
ferred to as CFU (Chiarappa-Frezzotti-Urbach), the Hamiltonian for Molecular Dy-
namics (MD) is:
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where Ŝ = Q̂hQ̂
†
h and ˆ means that the EO-preconditioned form of the 1-flavour oper-

ators, Q′
l, Q

′†
l and Q′′

l , Q
′′†
l , and the 2-flavour operator Qh, Q

†
h is taken (see eqs. 2.4, 2.5

and 2.2 in CFU). Here

P = Pn,sL
(Ŝ) = (

√

Ŝ)−1
[

1 + Rn,sL
(Ŝ)

]

,

see eq. 3.1 in CFU, is the polynomial that we plan to use in the MD. Its roots come
in complex conjugate pairs 1, thus we can write:

Pn,sL
(Ŝ) = B(Ŝ)B(Ŝ)† .

Note that the relative fit error Rn,sL
(s) =

√
sPn,sL

(s) is not a polynomial in s.
Given that, one then wishes to perform the Φh-heatbath and the A/R Metropolis

test (at the beginning and at the end of each MD-trajectory, respectively) with a
controlled approximation error, which can be removed (or made negligibly small) by
reweighting. This was only sketched in CFU (Sect. 3), and is discussed in detail here.

Let us introduce, as in eq. 3.2 of CFU, a second polynomial P̃ ,

P̃ñ,sL
(Ŝ) =

[√

Ŝ Pn,sL
(Ŝ)

]−1 [

1 + R̃n,sL
(Ŝ)

]

(2)

such that |R̃ñ,sL
(s)| � 1 for sL ≤ s ≤ 1. We have in mind

δ̃ = max
s

∣

∣

∣
R̃ñ,sL

(s)
∣

∣

∣
� δ = max

s
|Rn,sL

(s)| < 1 .

1Here we assume Pn,sL
(s) never vanishes for s real. This is a plausible assumption, which however

needs be proved or checked (work in progress).
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For instance one might choose δ ∼ 3 · 10−2 and δ̃ ∼ 3 · 10−4, or so ...

The (2-flavoured) pseudofermion Φh is obtained through:

Φh = P̃ B† Q̂h rh , rh = Gaussian random vector (3)

and is thus distributed according to

p(Φ) = c · exp

{

−
∣

∣

∣

∣

(

P̃B†Q̂h

)−1

Φh

∣

∣

∣

∣

2
}

, c = constant (4)

with, after some trivial algebra and sums over spacetime and internal indices under-
stood,
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∣

∣

∣
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= Φ†
h

[

1 + R̃
]−1

P
[

1 + R̃
]−1

Φh (5)

Note that this is an exact equation, involving no approximations.
Our idea is to perform the A/R Metropolis test with respect to the Hamiltonian

H̃2+1+1 = ... + Φ†
h

[

1 + R̃
]−1

P
[

1 + R̃
]−1

Φh (6)

which is the same as eq. (1), but for the Φh sector.
The reason is that for H̃2+1+1 one can compute ∆H̃2+1+1 = H̃end

2+1+1 − H̃start
2+1+1, at

the end and start points of each MD-trajectory, with very good precision, as explained
below. Moreover for δ̃ sufficiently small the acceptance should not be significantly
affected by H̃2+1+1 6= H2+1+1, where H2+1+1 drives the MD. In view of eq. (5), we

expect that having δ̃ = maxs

∣

∣

∣
R̃ñ,sL

(s)
∣

∣

∣
' 10−3 ↔ 10−4 can be sufficient.

The values of H̃2+1+1 at the start and end of each MD-trajectory can be computed
through

H̃start
2+1+1 =
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∣
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†
hrh (7)

H̃end
2+1+1 =

∣

∣

∣

∣
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)−1 ∣

∣

∣

Uend
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∣

∣

∣

∣

2

= Φ†
hB

†B χh (8)

where

χh =
(

1 + R̃
)−2

Φh =
(

P̃P ŜP P̃
)−1

Φh

is given by

χh =
(

1 − A + A2 − ...
)

Φh , A = P̃P ŜP P̃ − 1 (9)

and the truncation of the first expression in eq. (9) is justified by |A| ' 2δ̃ � 1.
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For instance, using χh truncated to the second order, χ
(2)
h = (1 − A + A2)Φh

should lead to an error ε
(

H̃end
2+1+1

)

' c
√

Nh
dof δ̃

3, with c to be found by numer-

ical experiment (expect small as the series given in eq. (9) has alternating signs),

Nh
dof =

(

L
a

)3 T
a
· 2 · 3 · 4 = 24Nsites can be 105 ↔ 108, so one should have δ̃ ∼ 10−4 to

keep the error ε
(

H̃end
2+1+1

)

≤ 10−8.

Note: if one insists in performing the A/R Metropolis test with respect to H2+1+1

in eq. (1), the Φ-heatbath requires Φh = B−1(Ŝ)rh which is computationally difficult,

since one has to solve
√

ŜB†BΦh =
√

ŜB†rh.

When the (P)HMC algorithm with the A/R Metropolis test based on H̃2+1+1 (and
MD based onH2+1+1) is employed, it delivers -after thermalisation- a sample of gauge
configurations (U) that will be distributed according to

µ2+1+1
PHMC(U) ∝ e−SG
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while we would like to have a distribution probability

µ2+1+1
PHMC(U) ∝ e−SG
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A reweighting procedure cab be hence employed to get a stochastic estimate of the
correction weight

Wh[U ] = det
[(√

Ŝ P (Ŝ) (1 + R̃)−2
)

∣

∣

∣

U

]

(12)

which can also be written in the computationally suggestive form

Wh[U ] =
{

det
[

P̃ (Ŝ)
∣

∣

∣

U

]}−1 {

det
[

1 + R̃(Ŝ)
∣

∣

∣

U

]}−1

(13)

The two factors in Wh[U ] in eq. (13) can be estimated either separately or together,
see below. The separate estimate is of particular interest in those cases where one
expects Wh[U ] to be almost constant as a functional of U , e.g: for sufficiently small δ

(thus
√

ŜP close to 1) and δ̃.

1. Separate estimates of the two factors in Wh[U ]:

(
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[

P̃ (Ŝ)
∣

∣

∣

U
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=

∫
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†
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†
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†
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†
2
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∣

∣

∣

U

)
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}

(15)

with P̄ a high degree polynomial in Ŝ approximating 1 + R̃

P̄ (Ŝ) =
(

1 + R̃(Ŝ)
) (

1 + R̄(Ŝ)
)

(16)
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and δ̄ = maxs

∣

∣R̄(s)
∣

∣ very small, say δ̄ ≤ 10−6, or so.
The idea here is that the evaluation of eq. (14) may be sufficient in most cases,
and one can always check a posteriori that the correction in eq. (15) does not
change the results within the statistical errors (including the η1-noise due to
stochastic reweighting).

2. Another method for estimating Wh[U ] is the following:

Wh[U ] =

∫

Dη e−η†η exp
{

η†
(

1 − (P̃PP̃ )
∣

∣

∣

U

)

η
}

(17)

with a fourth high degree polynomial P such that

P(Ŝ) = C†(Ŝ)C(Ŝ) ≡
(√

Ŝ P (Ŝ)
) (

1 + R(Ŝ)
)

, (18)

with maxs

∣

∣

∣
R(Ŝ)

∣

∣

∣
so small that (1 + R(Ŝ) equals 1 on all gauge configurations,

up to deviations negligible compared to the statistical errors.

Control of roundoff

1. Φh = P̃ (Ŝ) B†(Ŝ) Q̂h rh = B†(Ŝ) P̃ (Ŝ) Q̂h rh

• need monomial ordering (bit-reversal ?) for applying B†(Ŝ)

• can use Clenshaw recursion for application of P̃ (Ŝ)

2. Molecular Dynamics with P = B†B

• need of course monomial ordering (bit-reversal ?) for B and B†

3. H̃end
2+1+1 = Φ†

hB
†B χh , χh = (1 − A + A2 − ...)Φh

• use Clenshaw recursion for both B†B = P and A = P̃P ŜP P̃

(four times: two for P and two for P̃ )

4. Reweighting

• use Clenshaw recursion for

{

1 − P̃ and 1 − P̄ eqs. (14,15)

1 − P̃ P̄ P̃ eq. (17)

}

some standard tricks can be applied in the evaluation
η
†
1(1 − P̃ )η1 , η

†
2(1 − P̄ )η2 eqs. (14,15)

η†(1 − P̃PP̃ )η1 , P = C†C eq. (17)
which can be discussed further when we arrive at that stage . . .
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