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1. Introduction

Let A be a positive hermitian operator acting on the states x of a linear space. For
any shift s > 0, the equation

(A+s)z=0b (1.1)

can be solved iteratively using the conjugate gradient (CG) algorithm (see ref. [1],
for example). With little further work, it is in fact possible to solve the equation for
several shifts s at once [2]. In this note the multi-shift algorithm is briefly derived
starting from the standard formulation of the CG algorithm.

2. Basic CG algorithm

For a given source b, the basic CG algorithm solves the linear system

Az =0 (2.1)
iteratively by generating a sequence

Tr,pe, k=1,2,3,... (2.2)

of approximate solutions zp and search directions py recursively. In the course of
the recursion, the residues

r, =b— Az (2.3)



are also computed.
The CG recursion starts from the initial values

r1 = 0, r =p1 = b. (24)
Once zy, 7, and p, have been computed, the next approximate solution,
Thy1 = Tk + Pk, (2.5)

is obtained by calculating Ap and the coefficient

(Th>T)
ap = —————, 2.6
(s Ap) (256)
where the bracket (-,-) denotes the scalar product in the space of states.
The residue of the new solution,
Th+1 = Tk — Qg Apy, (2.7)

may then be calculated easily since Apy, is already known. After that the coefficient

. (T’k+1,?”k+1)
R R (2.8)

and the next search direction

Pk+1 = Th+1 + BrDr (2.9)

can be computed, thus completing the recursion.

3. Shifted system

The CG algorithm can also be used to solve the shifted system

(A+s)i=b (3.1)



for given source b and shift s > 0. Explicitly, the appoximate solutions Zj, associated
residues 7y, and search directions pj are, in this case, generated through the recursion

. R o R P, T

Th41 = Tk + gDk, o = M, (3.2)

Ph1 = Tk — Qx(A + 8)Pr, (3.3)

Prt1 = Frs1 + Brbr, B = W (3.4)
The initial values

21=0, 71 =p1=0b, (3.5)

are the same as before.
Independently of s, the residues 71, ..., 7, span the same linear subspace of states.
The CG algorithm moreover has the feature of producing orthogonal residues, viz.

(fg,7) =0 forall k#1 (3.6)
(for a proof of this property, see ref. [1] for example). In particular, 7 is orthogonal
to the space spanned by 71,...,7¢—1. Since this space does not depend on s, the
relation

,,zk = 'Aykrk (3.7)

must hold for some complex (s-dependent) constants 4.
It is possible to compute the coefficients 4, &x and (i recursively together with
ap and Gg. A little algebra shows that

Y1 =1, Yo = — a1 = Y01, B =43P (3.8)

The recursion for the higher-order coefficients may be derived by noting that

o B

Thp1 = = Arg + (1 + wi)ry — wpTe—1, Wi = ka . (3.9)
1

Tre1 = —Qp AP + (1 4+ Qg — SGk) Tk — OkTE—1, W = ]fﬂk 1, (3.10)




for all k£ > 2. After substitution of eq. (3.7) and division of eq. (3.10) by Jx+1, the
coefficients of Ary, rp and rp_1 in these two equations must match. The relations

@k = ﬁkak, (3.11)
W = —1+ pr(l +wi + say) (3.12)
(I)k = ﬁkﬁk—lwk (313)

are thus obtained, where the abbreviation

i = foy:l. (3.14)

was used.
Recalling the definition of wy and @y, the combination of egs. (3.11) and (3.13)
leads to

B = B, (3.15)

a relation that could also be directly obtained from the definitions (2.8) and (3.4)
of B and (k. The combination of (3.12) and (3.13) moreover shows that

Ok = {1 + sap + (1 - ﬁkfl)wk}_l, (316)

which allows the ratios py to be computed recursively starting from p; = (1+saq) 1.

4. Multi-shift algorithm

In this section, an implementation of the multi-shift CG algorithm is desribed that
solves two equations,

Az = b, (4.1)
(A+s)x =0, (4.2)

simultaneously. Further systems with different shifts s can be easily included in this
algorithm by dublicating the steps required for the solution of the second equation.
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The algorithm updates the states zg, i, pr and Zy, pr recursively, starting from

1 =21=0, r=p=p=0> (4.3)

In the course of the recursion, the coefficients ax_1, 8x—1 and g, pr—1 are updated
together with the states. Their values at the beginning of the recursion,

Bo=0, ao=%=po=1, (4.4)

are chosen so that the update rules specified below will give the correct sequence of
coefficients.

The step that leads from xy,...,pg t0 Tgy1,...,Pr+1 first requires the computa-
tion of Apy and of the coefficients

Tk, T
a = m, (4.5)
oy = akﬁk—l’ (4.6)
Op—1
Pre = 1+ sag + (11 — Pr—1)wk (4.7)
Qp = PrQg. (4.8)
One can then compute the linear combinations
Th+1 = Tk + APk, (4.9)
Ty1 = Tk + APk, (4.10)
Tht1 = Tk — k. Apg. (4.11)
At this point the coefficients
B = w, (4.12)
(re; k)
B = Bi B, (4.13)
Vi1 = Pk Yk (4.14)



can be calculated and subsequently the linear combinations

Pk+1 = Tk+1 + BkDr, (4.15)
Pr+1 = Yet17ht1 + Brbr, (4.16)
thus completing the step that leads from xg, ..., px to Tx41,. .., Prt1-

When the residue
175l = Yullrell (4.17)

reaches the required tolerance, the recursion can be restricted to the basic system
until ||| satisfies the convergence criterion for the latter. Note that 45 < 1 if s is
positive. The convergence rates are in fact determined by the condition number of
A+ s and A, respectively, and are thus widely different if s much larger than the
lowest eigenvalue of A.
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