
User’s guide for ranlxs and ranlxd v3.2

Martin Lüscher December 2005

The programs described in this guide serve to generate single- and double-precision

random numbers. They implement the ranlux generator of refs. [1–4] in a form

that is particularly well adapted to PC processors. Some details on the underlying

algorithms and their coding can be found in the accompanying notes [5].

Machine requirements

For ranlxs and ranlxd to work correctly, the computer must be able to handle

single- and double-precision floating point numbers with mantissa of at least 24 and

48 bits respectively. It is also assumed that the base of such numbers (i.e. the radix)

is equal to 2. Any machine complying with the IEEE-754 standard for floating

point arithmetic satisfies these conditions, but the standard is not required. It is

also assumed that default integers are represented by words of 32 bits or more.

The user does not have to care about these constraints since the initialization

programs check that the machine is suitable for the generator that is being initialized.

If the tests are not passed, the programs terminate with an error message.

Files

The program and associated header files are

ranlxs.c ranlxs.h

ranlxd.c ranlxd.h

testlx.c

The first two of these are modules containing a set of functions, while testlx.c is

a main program which allows the user to check that the modules are functioning

1

correctly on the chosen machine and with the chosen compiler options. If single-

precision random numbers are desired one should use the ranlxs module, while

the double-precision routines are collected in the ranlxd module. The modules are

independent of each other and can be used individually or simultaneously.

When writing these programs, care has been paid to exclude any misuses or in-

terference effects. The externally accessible functions are

ranlxs ranlxd

rlxs init rlxd init

rlxs size rlxd size

rlxs get rlxd get

rlxs reset rlxd reset

ranlxs and ranlxd are the main subroutines, while the others are utility programs

which provide access to the state of the generators.

Compilation

The programs are written in ISO C and should thus be portable. No special options

are required and a command like

cc [options] ranlxs.c ranlxd.c testlx.c -o testlx

will compile the programs and produce the executable testlx. The modules are

expected to work correctly, even with the most aggressive optimization options,

but it is recommended to check this by running testlx. This program performs a

number of tests and reports the results to stdout. The source code of the program

may also serve as an example for the proper usage of the modules.

Random number generation

The functions ranlxs and ranlxd generate random numbers of type float and

double respectively. The synopsis are

#include "ranlxs.h"

void ranlxs(float r[],int n);

and

2

#include "ranlxd.h"

void ranlxd(double r[],int n);

Both functions generate n new random numbers and assign them to the first n

elements of the array r. It is left to the user to ensure that r is declared appropriately,

i.e. no check on the array bounds is made. While this is not required, it is good

practice to choose n to be equal to the size of r. A typical code then looks like

#include "ranlxs.h"

#define LVEC 12

.

.

float rvec[LVEC];

.

.

ranlxs(rvec,LVEC);

The random numbers generated by ranlxs are uniformly distributed in the range

x/224, x = 0, 1, 2, . . . , 224 − 1.

Note that this set includes 0 and excludes 1. All numbers are exactly representable

on computers that pass the tests performed by the initialization program.

In the case of ranlxd the generated random numbers are uniformly distributed in

the extended range

x/248, x = 0, 1, 2, . . . , 248 − 1.

They are also exactly representable, but an important detail to keep in mind is

that the mantissa of IEEE-754 double-precision floating point numbers have 53 bits,

i.e. the 5 least significant bits of the generated numbers are always equal to zero on

machines complying with the standard.

Initialization

When ranlxs and ranlxd are called for the first time, the required initializations are

performed automatically with default settings for the parameters. The generators

may also be initialized explicitly by calling the functions rlx* init (with * being

equal to s or d as appropriate). The synopsis is

3

#include "ranlx*.h"

void rlx* init(int level,int seed);

where the seed is an arbitrary integer in the range 1 ≤ seed < 231. Different seeds

are guaranteed to result in different sequences of random numbers.

The level has to be equal to 0, 1 or 2, with only the two higher values being

permitted in the case of ranlxd. This parameter controls the statistical quality

of the random numbers generated. At the lowest level the statistical correlations

are already very small †. For most applications, including large scale Monte Carlo

simulations, this level should be adequate. Increasing the level by 1 reduces the

residual correlations by several orders of magnitude at the cost of doubling the

execution time [1,5].

The default initializations are obtained by choosing seed=1 and the lowest admis-

sible levels (0 in the case of ranlxs and 1 for ranlxd). The initialization programs

set the generators to a definite state and the sequences of random numbers generated

by subsequent calls of ranlxs and ranlxd are thus reproducible.

I/O routines

While the data defining the states of the random number generators are not directly

accessible, it is possible to extract the complete information on the current states

through the functions rlxs get and rlxd get. The synopsis is

#include "ranlx*.h"

void rlx* get(int state[]);

On output the array state contains the desired information in an encoded form.

The array should be declared to have n=ranlx* size() elements. It may also have

more elements, but these are not used.

† Note that the level assignment is different from the one in the published Fortran program for

the ranlux generator [2]. The levels 0 and 1 roughly correspond to level 3 and 4 there (cf. ref. [5]).

4

Table 1. Average execution times in µs per random number on a PC

with Intel Pentium 4 (1.4 GHz) processor

program level = 0 level = 1 level = 2

ranlxs (ISO C) 0.056 0.090 0.161

ranlxs (ISO C & SSE) 0.031 0.050 0.093

ranlxd (ISO C) – 0.173 0.318

ranlxd (ISO C & SSE) – 0.092 0.160

At a later stage in the calling program or in another program, the generators

may then be reset to the state defined by the array state by invoking the functions

rlxs reset and rlxd reset. The synopsis is

#include "ranlx*.h"

void rlx* reset(int state[]);

The programs check that the data passed by the argument are sane and exit with

an error message if this is not the case.

SSE acceleration

To enable the use of SSE inline assembly code, the macro SSE should be defined

at compilation time. With the GNU C compiler this can be achieved simply by

specifying the option -DSSE as in

gcc -O2 -DSSE ranlxs.c ranlxd.c testlx.c -o testlx

The correct functioning of the binaries ranlxs.o and ranlxd.o may then be checked

by running the test program testlx. Other compilers cannot be used at this point

unless they understand the GNU inline assembly syntax. Whether the SSE macro is

set or not has no effect on the functionality of the programs: the generated sequences

of random numbers are always exactly the same.

5

Timing

The computer time required to generate new random numbers depends on the ma-

chine, the compiler and the luxury level. Some benchmark results are reported in

table 1 for a Linux PC with kernel version 2.4.0, GNU C compiler version 2.95.2

and optimization level -O2. These figures can be expected to scale roughly with the

frequency of the processor, since the memory latency has a neglible influence on the

performance of the programs.

References

[1] M. Lüscher, A portable high-quality random number generator for lattice field

theory simulations, Comp. Phys. Comm. 79 (1994) 100

[2] F. James, ranlux: a Fortran implementation of the high-quality pseudo-random

number generator of Lüscher, Comp. Phys. Comm. 79 (1994) 111 [E: ibid. 97

(1996) 357]

[3] K. G. Hamiltion and F. James, Acceleration of ranlux, Comp. Phys. Comm. 101

(1997) 241

[4] K. G. Hamiltion, Assembler ranlux for PCs, Comp. Phys. Comm. 101 (1997) 249

[5] M. Lüscher, Algorithms used in ranlux v3.0 (May 2001)

6

