
JuBE Tutorial
Benchmarking a computer system usually involves numerous tasks, involving several runs of different
applications. Configuring, compiling, and running a benchmark suite on several platforms with the
accompanied tasks of result verification and analysis needs a lot of administrative work and produces a lot of
data, which has to be analysed and collected in a central database. Without a benchmarking environment all
these steps have to be performed by hand.

For each benchmark application the benchmark data is written out in a certain format that enables the
benchmarker to deduct the desired information. This data can be parsed by automatic pre- and post-processing
scripts that draw information, and store it more densely for manual interpretation.

The JuBE benchmarking environment provides a script based framework to easily create benchmark sets, run
those sets on different computer systems and evaluate the results. It is actively developed by the Jülich
Supercomputing Centre of Forschungszentrum Jülich, Germany.

This tutorial intends to give a guideline for integrating software packages in JuBE using the example of Intel®
MPI Benchmarks 3.2 (IMB). This benchmark is freely available and can be downloaded from the Intel
webpage (http://software.intel.com/en-us/articles/intel-mpi-benchmarks/). If you are not familiar with this
software we recommend to compile it and to try out some of its features before reading this tutorial. In this
manner it is more easy for you to understand the features of JuBE because you recognize which parts are
JuBE specific and which parts are allocated to IMB.

We will show step by step what has to be done to let the program run under the control of JuBE. We describe
the integration on an Intel Nehalem cluster, so please be aware that the settings given in this tutorial will most
likly not function on your machine. If you are not familiar with XML it would be a good idea to read a tutorial
about that topic before you start but don't worry: for a successful use of JuBE only the very basic concepts of
XML are necessary.

JuBE shows the following general structure

JuBE/
applications/♦
bench/♦
doc/♦
platform/♦
skel/♦
LICENCE♦
README♦

•

The applications/ subdirectory contains the individual benchmark applications. The bench/ subdirectory
contains the benchmark scripts. The doc/ subdirectory contains the overall documentation of the benchmark
suite. The platform/ subdirectory holds the platform definitions as well as job submission script templates for
each defined platform. The skel/ subdirectory contains templates for analysis patterns for text output of
different measurement tools. All information that are essential for the integration process are organized in
several XML files which will be introduced in this tutorial.

JuBE Tutorial 1

http://software.intel.com/en-us/articles/intel-mpi-benchmarks/

1. Define the Platform and the Job Script
First of all we have to define the platform on which our software should run. We have to make clear to JuBE
which compilers are available on the machine under consideration, which libraries are available and so on.
These kind of information has to be included in the file "platform.xml" which is located in "platform/". The
following figure shows the general settings for the Nehalem cluster:

<platforms>
 <platform name="Intel-Nehalem-HPC-FF">

 mpi_f90 = "mpif90"
 mpi_f77 = "mpif77"
 mpi_cc = "mpicc"
 mpi_cxx = "mpicxx"

 cxxflags = "-fast"
 cflags = "-fast"
 f77flags = "-fast"
 f90flags = "-fast"

 ldflags = "-i-dynamic"
 mpi_dir = ""
 mpi_lib = ""
 mpi_inc = ""
 mpi_bin = ""

 blas_dir = ""
 blas_lib = "-L/opt/intel/Compiler/11.0/074/mkl/lib/em64t"

 mkllib = "mkl"
 mkl_lib = "-L/opt/intel/Compiler/11.0/074/mkl/lib/em64t"
 mkl_inc = "-I/opt/intel/Compiler/11.0/074/mkl/include"
 mkl_version = ""

 fftlib = "mkl"
 fft_lib = "-L/opt/intel/Compiler/11.0/074/mkl/lib/em64t"
 fft_inc = "-I/opt/intel/Compiler/11.0/074/mkl/include"
 fft_version = ""

 module_cmd = "module load"
 />
 </platform>
</platforms>

Above all you have to choose a name for your platform, in our example we chosed:

<platform name="Intel-Nehalem-HPC-FF">

Later on this platform will be invoked by the top level file which we discuss later. You are also able to define
more than one platform in platform.xml and that's what you probably will do when you are interested in
benchmark runs. To make the available compilers and libraries known to JuBE, just define some arbitrary
names and apply the corresponding compilers as well as the libraries to them, like:

mpi_f90 = "mpif90"
blas_lib = "-L/opt/intel/Compiler/11.0/074/mkl/lib/em64t

1. Define the Platform and the Job Script 2

The same can be done with any other information like compiler flags, tools that have to be used (make, ar ...)
etc. But keep in mind that it is important to consider the structure of the XML files, otherwise you very likely
provoke errors. In the next step we have to create a template file for the job script which will be processed by
the resource manager. The definitions hereby depends on your resource management system. On our platform
we use Torque, which is a free available version of PBS (Portable Batch System). The template file has to be
created in a subdirectory of the platform/ directory:

JuBE/
platform/

Intel-Nehalem-Cluster/intel_PBSsubmit.job.in◊
♦

•

That's the content of "intel_PBSsubmit.job.in"

#!/bin/bash -x

CPU time limit
#PBS -l cput=#TIME_LIMIT#

#PBS -S /bin/bash

#PBS -l nodes=#NODES#:ppn=#NCPUS#

#PBS -M #NOTIFY_EMAIL#
#PBS -N #BENCHNAME#
#PBS -o #STDOUTLOGFILE#
#PBS -e #STDERRLOGFILE#

cd ${PBS_O_WORKDIR}
#ENV#
echo "<jobstart at=\"`date`\" />" >> #OUTDIR#/start_info.xml
#PREPROCESS#
#MEASUREMENT# #STARTER# #ARGS_STARTER# #EXECUTABLE# #ARGS_EXECUTABLE#
cd ${PBS_O_WORKDIR}
#POSTPROCESS#
echo "<jobend at=\"`date`\" />" >> #OUTDIR#/end_info.xml

You are completely free concerning the naming of the subdirectory and the template file. By convention the
name of any template files ends with the extension ".in". The variable parts of the file which have to be
substituted when JuBE is invoked are labeled by a hash (#) at the beginning and at the end of the variable. In
order to avoid errors arising from case sensitivity it is a good idea to use only capital letters for these
variables. Please note that the hashes before the PBS command don't indicate variables but mark the
commands for PBS.

2. Integrate the Software

After defining the platform and the template for the batch system we can go on with the integration of the
software package. To do so we swap to the applications/ directory. Here we have to create a subdirectory
which includes all the necessary files for the integration process. Since we want to integrate IMB we name the
directory "IMB/":

JuBE/
applications/

IMB/◊
♦

•

2. Integrate the Software 3

.bench_current_id.dat⋅
jube-Intel-Nehalem-HPC-FF.xml⋅
compile.xml⋅
execute⋅
prepare.xml⋅
analyse.xml⋅
result.xml⋅
verify.xml⋅
src/

IMB_3.1•
IMB_3.2•

⋅

input/⋅
run/⋅

Before we start to modify our XML files we copy the source code to the src/ directory and since there could
exist several versions of the software it makes sense to create subdirectories for each version. In our case we
want to integrate version 3.2 of IMB so we create a subdirectory called IMB_3.2 just in the src/ directory and
store the source code there. Now let's have a closer look to the files given above.

.bench_current_id.dat

This file just keeps the id number of the latest JuBE run, that is used for the creation of distinct filenames and
directory name for the benchmark run procedure. JuBE creates this file automatically.

jube-Intel-Nehalem-HPC-FF.xml

The top level file "jube-Intel-Nehalem-HPC-FF.xml" comprises all steps that have to be triggered
for a full benchmark run. This file doesn't follow any naming convention so that you can name it as you like.
But it's best practice to refer the naming to the platform for which it is used since there could be more than
one kind of such a file in this directory and following the suggested naming convention makes it easy to
distinguish between them. The top level file shows the following structure:

<bench name = "IMB"
 platform= "Intel-Nehalem-HPC-FF" >

<!-- ** -->

<benchmark name="IMB_3.2_latency" active="1">
 <!-- version="reuse|new" -->
 <compile cname="$platform" version="new" />
 <tasks threadspertask="1" taskspernode="2" nodes="1" />
 <params ncpus="$taskspernode"
 type=""
 multi=""
 npmin=""
 msglen=""
 input=""
 iter=""
 time=""
 mem=""
 mapx="$nodes"
 mapy="$taskspernode"
 />
 <prepare cname="IMB_3.2" />

.bench_current_id.dat 4

 <execution iteration="1" cname="$platform" />
 <verify cname="IMB_3.2" />
 <analyse cname="IMB_3.2" />
</benchmark>

<!-- ** -->
</bench>

It starts with the root element called "<bench>". There are two attributes, namely "name" and
"platform". For "name" we choose the name of the software which we want to integrate in JuBE.
"platform" specifies the platform settings which should be taken and which is included in
"JuBE/platform/platform.xml". Within the top level file it is allowed to include an arbitrary number
of benchmark run configurations, they are distinguished by different benchmark names. In our case we only
have one benchmark run which we call "IMB_3.2_latency". This run can be activated through the
active attribute, whereby "1" stands for "let it run" and "0" indicates that the configuration must not be
considered. If you have more than one benchmark configuration for IMB defined within the top level file you
can switch on and off the several configurations by "active". Hint: Never turn on more than one benchmark
run configuration because only the very last configuration in the file will be considered by JuBE.

The "<compile>" section triggers the compilation of the software. "cname" invokes a compilation
configuration set included in compile.xml. There could exist different definitions of compilation sets so it is
important to define a name at this point. In "cname=$platform" $platform will be substituted by the
setting in "platform" above which results in "cname=Intel-Nehalem-HPC-FF" in our case.
"version" can be set to "new" or "reuse". "new" triggers the compilation step while "reuse" causes that the
compilation step will be skipped. If there doesn't exist an executable the compilation will start anyway. The
executable will be stored in run/ which will be created in the first run.

In the "<tasks>" section all information are set which are needed to let the executable run on the platform.
The settings are very descriptive, threadspertask defines the number of threads which should be used per task
and so on. This piece of information will automatically be included in the job file when JuBE starts its work.
One of JuBE greatest advantages is that it is possible to span a multidimensional parameter space. For
example, if you want to let the executable run on a different number of nodes you can define this within one
step:

<tasks threadspertask="1" taskspernode="2" nodes="1,2,3,4" />

If you additionally want the program run on a different number of nodes with a different number of tasks per
node, just define:

<tasks threadspertask="1" taskspernode="2,4,8" nodes="1,2,3,4" />

This settings result in 12 different benchmark runs which are consistently managed by JuBE. More details
about the storage mechanism within JuBE will follow later.

The "<params>" section is meant for settings concerning the integrated software. Here, ncpus, multi, etc. are
options that are dedicated to IMB.

The prepare step ensures that all additional files essential for the benchmark run are available and that the
substitutions in this files are processed by JuBE. The execution step is triggered by the "<execution>"
section. As in all sections the configuration set within the corresponding file (for example execute.xml for the
execution step) can be reached by "cname". In the verify step a script is invoked which checks if the results
make sense and if the run terminated normally. This verify script is individually and has to be adapted for

jube-Intel-Nehalem-HPC-FF.xml 5

each integrated software package. Last but not least in the end we want to extract the most important results
from our output. This will be done by special patterns which are defined in analyse.xml. The analyse step is
invoked by the "<analyse>" section within the top level file, of which more later. We see that the top level
file brings together all steps that are necessary to let the benchmark run.

compile.xml

All important information for the compilation are stored in compile.xml. For IMB a reasonable configuration
could be:

<compilation>
 <!-- Version 3.2 -->
 <compile cname="Intel-Nehalem-HPC-FF">
 <src directory="./src/IMB_3.2" files="*.c *.h GNUmakefile Makefile.base make_ict.in make_mpich.in" />
 <substitute infile="make_ict.in" outfile="make_ict">
 <sub from="#MPI_CC#" to="mpicc" />
 <sub from="#OPTFLAGS#" to="-O3" />
 <sub from="#LDFLAGS#" to="$ldflags" />
 </substitute>

 <substitute infile="make_mpich.in" outfile="make_mpich">
 <sub from="#LIBS#" to="-lm" />
 <sub from="#MPI_CC#" to="mpicc" />
 <sub from="#CPPFLAGS#" to="$cflags" />
 <sub from="#LFLAGS#" to="$lflags" />
 <sub from="#OPTFLAGS#" to="$cflags" />
 <sub from="#OUTDIR#" to="$outdir" />
 <sub from="#EXECNAME#" to="$execname" />
 <sub from="#LIB_PATH#" to="" />
 <sub from="#LIBS#" to="" />
 <sub from="#LDFLAGS#" to="$ldflags" />
 <sub from="#CPPFLAGS#" to="" />
 <sub from="#MPI_HOME#" to="" />
 <sub from="#MPIINCLUDE#" to="/usr/lpp/ppe.poe/include" />
 </substitute>
 <command>(gmake -f GNUmakefile all; cp -p IMB-MPI1 $execname)</command>
 </compile>
</compilation>

The configuration is labeled with the name that is given in the top level file, namely
"Intel-Nehalem-HPC-FF". The "<src>" element is supposed to define which files are relevant for the
compilation. These files will be copies to a distinct place with a distinct naming along with all other files that
are needed for the benchmark run. We'll take a look at this directory in short. The "<substitute>" and the
"<sub>" elements organize the substitution mechanism for the template file. As previously mentioned we
mark the template files with the ".in" extension. In our example above JuBE invokes "make_ict.in" and
"make_mpich.in" and substitutes the variables in these files concerning the definitions given by the "<sub>"
elements and creates the output files. The following example makes this point clearer:

LIB_PATH = LIB_PATH =

LIBS = LIBS =

CC = #MPI_CC# CC = mpicc

ifeq (,$(shell which ${CC})) ifeq (,$(shell which ${CC}))

$(error ${CC} is not defined through
the PATH environment variable

$(error ${CC} is not defined through
the PATH environment variable

compile.xml 6

setting. Please try sourcing an
Intel(r) Cluster Tools script file
such

setting. Please try sourcing an
Intel(r) Cluster Tools script file
such

as "mpivars.[c]sh" or
"ictvars.[c]sh")

as "mpivars.[c]sh" or
"ictvars.[c]sh")

endif endif

OPTFLAGS = #OPTFLAGS# OPTFLAGS = -fast

CLINKER = ${CC} CLINKER = ${CC}
LDFLAGS = #LDFLAGS# LDFLAGS = -i-dynamic

CPPFLAGS = CPPFLAGS =

export CC LIB_PATH LIBS OPTFLAGS
CLINKER LDFLAGS CPPFLAGS

export CC LIB_PATH LIBS OPTFLAGS
CLINKER LDFLAGS CPPFLAGS

include Makefile.base include Makefile.base

On the left hand we have our template file "make_mpich.in" and on the right hand the consequent makefile
"make_mpich". Whenever JuBE encounters a variable labeled by the hashes it looks it up in the substitution
section in compile.xml and performs the desired changes. If you want to try out different settings for the
compilation step of your software package you only need to adapt the parameters in compile.xml. The same
mechanism will also be applied for the execution step.
Last but not least the "<command>" element gives you the opportunity to define how you want to start the
compilation. In most cases this is likely done by the invokation of the make command.

execute.xml

The concepts and mechanisms for the execution step and the compilation step are substantially the same:

<execution>
 <execute cname="Intel-Nehalem-HPC-FF">
 <input files="../../platform/Intel-Nehalem-HPC-FF/intel_PBSsubmit.job.in" />
 <substitute infile="intel_PBSsubmit.job.in" outfile="intel_PBSsubmit.job">
 <sub from="#OUTDIR#" to="$outdir" />
 <sub from="#LOGDIR#" to="$logdir" />
 <sub from="#STDOUTLOGFILE#" to="$stdoutlogfile" />
 <sub from="#STDERRLOGFILE#" to="$stderrlogfile" />
 <sub from="#BENCHNAME#" to="$benchname" />
 <sub from="#TIME_LIMIT#" to="00:02:00" />
 <sub from="#NODES#" to="$nodes" />
 <sub from="#NCPUS#" to="$ncpus" />
 <sub from="#TASKSPERNODE#" to="$taskspernode" />
 <sub from="#THREADSPERTASK#" to="$threadspertask" />
 <sub from="#EXECUTABLE#" to="$executable" />
 <sub from="#NOTIFY_EMAIL#" to="a.schnurpfeil@fz-juelich.de" />
 <sub from="#NOTIFICATION#" to="never"/>
 <sub from="#ARGS_EXECUTABLE#" to="$input $msglen $multi"/>
 <sub from="#PREPROCESS#" to="" />
 <sub from="#POSTPROCESS#" to="" />
 <sub from="#STARTER#" to="mpiexec" />
 <sub from="#MEASUREMENT#" to="" />
 <sub from="#ARGS_STARTER#" to="-np `$nodes * $ncpus`"/>
 </substitute>
 <command>qsub intel_PBSsubmit.job</command>
 </execute>
</execution>

execute.xml 7

First you invoke the template file - in the example given above it's intel_PBSsubmit.job.in - than JuBE will
perform the substitutions defined by <sub> elements and stores the changes in the output file, namely
intel_PBSsubmit.job. Besides the variables which are defined in other XML files JuBE has some internally
defined variables like $outdir and $logdir, which ensure that your benchmark run will be stored in a distinct
place with a distinct naming.

prepare.xml

During the preparation procedure all adaptations are considered which are important for the benchmark run
but which are not included in the compile or execution step. IMB provides many different MPI tests like
PingPong?, Reduce, Scatter etc. Here we are only interested in the Pingpong test so the input file for IMB
should only contain the keyword PingPong (if this is not clear than please have a look at the IMB
documentation). This kind of configuration could be done by the preparation step:

<preparation>
 <prepare cname="IMB_3.2">
 <input files="input/benchmarks.dat.in run/imb_postprocess.pl input/lengths.dat" />
 <substitute infile="benchmarks.dat.in" outfile="benchmarks.dat">
 <sub from="#ROUTINE#" to="pingpong" />
 </substitute>
 </prepare>
</preparation>

With these settings we create an input file for IMB which only contains the keyword for addressing the
Pingpong test.

verify.xml

The verification step tests your results and will be triggered by a second invokation of JuBE. We give some
examples of JuBE invokations with different sets of options later in the tutorial. Here you typically call a perl
script which do the testing of your results. Because this is an individual step which can't be automated the
script has to be programmed by the user. But don't worry there are some examples available. For IMB the
invocation step could be triggered by the following setting:

<verification>
 <verify cname="IMB_3.2">
 <command>
 run/check_results_imb.pl $subdir/verify.xml $stdoutfile $stderrfile
 </command>
 </verify>
</verification>

check_results_imb.pl expects the standard output file and the standard error file and greps for certain
information. It's not really necessary to have such a verification script but it's vital to define at least a "pseudo"
verification step because of technical reasons.

analyse.xml and result.xml

In the first step JuBE performs the compiling and the execution as described above and in the second step -
indeed JuBE has to be invoked a second time - the results can be analysed and included in a table. The analyse
procedure is organized by analyse.xml and result.xml. Since these two files show a strong interaction, we
consider them simultaneously at this point.

prepare.xml 8

In order to make clear which results have to be extracted out of the output you can define search patterns
based on regular expressions in analyse.xml. Here we give a simple example:

<analyzer>
 <analyse cname="IMB_3.2">
 <parm name="PingPong" unit="MBytes/sec" mode="line" type="float">
 \s+100000\s+$patnint\s+$patnfp\s+$patfp
 </parm>
 <parm name="test" unit="" mode="derived" type="float">
 $PingPong*$taskspernode
 </parm>
 </analyse>
</analyzer>

===

PingPong

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000 0.35 0.00
 1 1000 0.33 2.93
 10 1000 0.33 29.03
 100 1000 0.38 251.97
 1000 1000 0.56 1704.30
 10000 1000 2.24 4263.26
 100000 419 11.72 8139.87

All processes entering MPI_Finalize

With the pattern defined in the analyse section we match the last row in the table of the PingPong results
and extract the last number, i.e. 8139.87. How does this regular expression work? To make this point clear we
only consider the regular expression:

\s+100000\s+$patnint\s+$patnfp\s+$patfp

\s matches one or more free spaces at the beginning of a line in the output. The next pattern, 100000, than
matches the last row of the table. Since we are interested in the last number of that line, we have to skip two
values, i.e. "419" and "11.72". This is fulfilled by "$patnint" and "$patnfp". These patterns, which
are defined within JuBE, match an arbitrary integer number and floating point number respectively. Of course
you are free to define such patterns by yourself. The last pattern "$patfp" matches our final number and
stores it in the variable PingPong, the name that was chosen for the name attribute of the "<parm>"
element. Please recognize that "$patfp" differs from "$patnfp". In order to extract a peace of data you
have to put your corresponding pattern in braces (brace-matching for Perl regular expressions, that's the
mechanism behind $patfp). This kind of searching can be done in the line mode set in the "<analyse>"
section of the example above. mode="derived" allows to create derived numbers from known values. The
example hereto makes not much sense but shows how it works.

The entries for the table of the final results are defined in result.xml:

<result>

analyse.xml and result.xml 9

 <show active="1" colw="22" >
 taskspernode, PingPong, test
 </show>

 <sort active="1">
 PingPong
 </sort>
</result>

Here we define via "<show>" which results should be represented in our result table. The sort section in
result.xml gives the opportunity to choose wich column should be used for the ordering of the values in the
table. This make sense if you include results from more than one calculation. In our example the results would
be ordered with descending values of the PingPong variable.

Now everything is done what is needed to integrate IMB in JuBE. We have defined a platform and a job
script, we did the settings for the compilation and the execution step and finally we described how we can
extract our results and organize them in tables. By the way we learnt the meaning of the prepare and verify
step.

3. Using JuBE

Having integrated IMB in JuBE we are now able to perform some test runs. We will go through the procedure
again step by step to make clear what JuBE actually does and how the single benchmark runs are organized
and stored. JuBE is invoked by the command jube. If you don't set any options you will get a short overview
of the available options:

schnural@zam009:~/SUBVERSION/JuBE/applications/IMB> jube
Usage: /home/schnural/bin/jube <options> <xml-file> <id-range>

 -start, -submit * : submit new set of benchmark runs (defined in xml-file)
 -update + : scans for results of finished jobs
 -result + : shows results of benchmark runs (tables)
 -force + : force a rescan of benchmark output files for new results
 -cdir <dir> : directory containing the xml files
 (default: ./)
 -pdir <dir> : directory containing platforms definition XML files
 (default: ../platforms)
 -tmpdir <dir> : directory which is used for running the job in,
 please use only an absolute path
 (default: tmp in benchmark directory)
 -verbose level : verbose
 -dump : dump XML-file structure
 -showall : shows all results, incl. failed and queued runs
 -debug : don't submit jobs
 -rmtmp : remove temp directory directly
 -cmpdir <dir> : directory which is used for running the compile step in,
 please use only an absolute path
 -Version : prints out the current version
 * : needs XML top level file <xml-file>
 + : a range of benchmark run ids can be specified <id-range>

If everything is correct, we should have the following files and subdirectories in our IMB directory:

JuBE/applications/IMB
.bench_current_id.dat♦
analyse.xml♦

•

3. Using JuBE 10

compile.xml♦
execute.xml♦
input/♦
jube-Intel-Nehalem.xml <--- top level file♦
prepare.xml♦
result.xml♦
run/♦
src/♦
verify♦

Maybe you want to begin with the checking of your configuration and you start the procedure with:

jube -start <top level file> -debug -verbose 5

-debug or -de invokes the debug mode included in JuBE which triggers the compilation and the setup of the
environment but it doesn't submit the job. The -verbose [1..5] or -ve [1..5] option gives additional
information. Now let's start our first run:

jube -start jube-Intel-Nehalem-HPC-FF.xml -debug -verbose 5
--
 Benchmark-Suite: starting at Thu Jul 16 09:09:44 2009
--
 jube version 1.1p17
--
 OPTIONS: start = 1
--
 OPTIONS: verbose = 5
 OPTIONS: Benchmark XML-file = jube-Intel-Nehalem-HPC-FF.xml
 OPTIONS: Compile XML-file = $PWD/compile.xml
 OPTIONS: benchlogfile = $PWD/benchlog/benchlog_000001.log
 OPTIONS: configdir = $PWD
 OPTIONS: platformdir = /home/schnural/SUBVERSION/JuBE/bench/../platform
--
---> processing jube-Intel-Nehalem-HPC-FF.xml ...
parsing jube-Intel-Nehalem-HPC-FF.xml in 0.0963 sec
---> processing $PWD/compile.xml ...
parsing $PWD/compile.xml in 0.0567 sec
---> processing $PWD/prepare.xml ...
parsing $PWD/prepare.xml in 0.0111 sec
---> processing $PWD/execute.xml ...
parsing $PWD/execute.xml in 0.0896 sec
---> processing /home/schnural/SUBVERSION/JuBE/bench/../platform/platform.xml ...
parsing /home/schnural/SUBVERSION/JuBE/bench/../platform/platform.xml in 0.4419 sec
platform=>Intel-Nehalem-HPC-FF<
scanning benchmarks for IMB on Intel-Nehalem-HPC-FF:
 01: IMB_3.2_latency cname=$platform (Intel-Nehalem-HPC-FF) -> Identifier=IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001
 -> generating temporary directory $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001
 -> generating run step $platform
 1 : 1 nodes 2 tasks 1 threads
 substitute var1: nodes = 1
 substitute var1: taskspernode = 2
 substitute var1: taskspernode = 2
 substitute var1: nodes = 1
 substitute var1: taskspernode = 2
 substitute var1: taskspernode = 2
 1: [iter->][msglen->-msglen lengths.dat][input->-input benchmarks.dat][mapx->1][time->][ncpus->2][npmin->][multi->multi 1][type- ...
 substitute var1: platform = Intel-Nehalem-HPC-FF
 -> generating temporary directory $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01

3. Using JuBE 11

 -> compile step $platform (Intel-Nehalem-HPC-FF)
 substitute var1: platform = Intel-Nehalem-HPC-FF
 substitute var1: platform = Intel-Nehalem-HPC-FF
 key= >execname< >$PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/IMB_Intel-Nehalem-HPC-FF_cname_Intel-Nehale ...
 key= >msglen< >-msglen lengths.dat< rc=0
 key= >input< >-input benchmarks.dat< rc=0
 key= >time< > < rc=0
 key= >pdir< >/home/schnural/SUBVERSION/JuBE/bench/../platform< rc=0
 key= >rundir< >$PWD/run< rc=0
 key= >npmin< > < rc=0
 key= >subid< >n1p2t1_t001_i01< rc=0
 key= >subdir< >$PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01< rc=0
 key= >cname< >Intel-Nehalem-HPC-FF< rc=0
 key= >platform< >Intel-Nehalem-HPC-FF< rc=0
 key= >id< >IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001< rc=0
 key= >mapy< >2< rc=0
 key= >iter< > < rc=0
 key= >tasks< >2< rc=0
 key= >mapx< >1< rc=0
 key= >outdir< >$PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01< rc=0
 key= >name< >IMB_3.2_latency< rc=0
 key= >benchhome< >$PWD< rc=0
 key= >ncpus< >2< rc=0
 key= >threadspertask< >1< rc=0
 key= >benchname< >IMB< rc=0
 key= >taskspernode< >2< rc=0
 key= >mem< > < rc=0
 key= >type< > < rc=0
 key= >multi< >multi 1< rc=0
 key= >nodes< >1< rc=0
 substitute var1: execname = $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/IMB_Intel-Nehale ...
 copy files/dirs: *.c *.h GNUmakefile Makefile.base make_ict.in make_mpich.in
 executing: cp -rp ./src/IMB_3.2/*.c $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/src/
 executing: cp -rp ./src/IMB_3.2/*.h $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/src/
 executing: cp -rp ./src/IMB_3.2/GNUmakefile $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/src/
 executing: cp -rp ./src/IMB_3.2/Makefile.base $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/src/
 executing: cp -rp ./src/IMB_3.2/make_ict.in $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/src/
 executing: cp -rp ./src/IMB_3.2/make_mpich.in $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/src/
 sub: make_ict.in -> make_ict
 (1) #01 #OPTFLAGS# -> -O3
 (1) #01 #LDFLAGS# -> -i-dynamic
 (1) #01 #MPI_CC# -> mpicc
 (2) #00 #OPTFLAGS# -> -O3
 (2) #00 #LDFLAGS# -> -i-dynamic
 (2) #00 #MPI_CC# -> mpicc
 sub: make_mpich.in -> make_mpich
 substitute var1: outdir = $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01
 (1) #00 #OUTDIR# -> $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB...
 substitute var1: cflags = -O3
 (1) #01 #OPTFLAGS# -> -O3
 (1) #01 #MPI_HOME# ->
 substitute var1: ldflags = -i-dynamic
 (1) #01 #LDFLAGS# -> -i-dynamic
 (1) #02 #MPI_CC# -> mpicc
 (1) #01 #LIB_PATH# ->
 (1) #00 #MPIINCLUDE# -> /usr/lpp/ppe.poe/include
 (1) #01 #LIBS# ->
 (1) #01 #CPPFLAGS# ->
 substitute var1: execname = $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/IMB_Intel-Nehale ...
 (1) #00 #EXECNAME# -> $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB...
 unknown vars in $lflags: lflags
 (1) #00 #LFLAGS# -> $lflags

3. Using JuBE 12

 substitute var1: outdir = $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01
 (2) #00 #OUTDIR# -> $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB...
 substitute var1: cflags = -O3
 (2) #00 #OPTFLAGS# -> -O3
 (2) #00 #MPI_HOME# ->
 substitute var1: ldflags = -i-dynamic
 (2) #00 #LDFLAGS# -> -i-dynamic
 (2) #00 #MPI_CC# -> mpicc
 (2) #00 #LIB_PATH# ->
 (2) #00 #MPIINCLUDE# -> /usr/lpp/ppe.poe/include
 (2) #00 #LIBS# ->
 (2) #00 #CPPFLAGS# ->
 substitute var1: execname = $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/IMB_Intel-Nehale ...
 (2) #00 #EXECNAME# -> $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB...
 unknown vars in $lflags: lflags
 (2) #00 #LFLAGS# -> $lflags
 executing compile command: (cd $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/src; (gmake -f GNUmakefile a ...
 executing: cp -p $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/IMB_Intel-Nehalem-HPC-FF_cname_Intel-Nehal ...
 -> prepare step IMB_3.2 (Intel-Nehalem-HPC-FF)
 prep input files: input/benchmarks.dat.in run/imb_postprocess.pl input/lengths.dat
 executing: cp -rp input/benchmarks.dat.in $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/
 executing: cp -rp run/imb_postprocess.pl $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/
 executing: cp -rp input/lengths.dat $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/
 sub: benchmarks.dat.in -> benchmarks.dat
 (1) #01 #ROUTINE# -> PingPong
 (2) #00 #ROUTINE# -> PingPong
 -> execute step $platform (Intel-Nehalem-HPC-FF)
 substitute var1: platform = Intel-Nehalem-HPC-FF
 copy files: ../../platform/Intel-Nehalem-HPC-FF/intel_PBSsubmit.job.in
 executing: cp -rp ../../platform/Intel-Nehalem-HPC-FF/intel_PBSsubmit.job.in $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000 ...
 sub: intel_PBSsubmit.job.in -> intel_PBSsubmit.job
 substitute var1: nodes = 1
 substitute var1: ncpus = 2
 eval 2 -> -np 2 >`1 * 2`<
 (1) #01 #ARGS_STARTER# -> -np 2
 substitute var1: outdir = $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01
 (1) #02 #OUTDIR# -> $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB...
 substitute var1: ncpus = 2
 (1) #01 #NCPUS# -> 2
 substitute var1: stderrlogfile = $PWD/logs/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001.n1p2t1_t001_i01_stderr.log ...
 (1) #01 #STDERRLOGFILE# -> $PWD/logs/IMB_Intel-Nehalem-HPC-FF_IM...
 substitute var1: threadspertask = 1
 (1) #00 #THREADSPERTASK# -> 1
 (1) #01 #STARTER# -> mpiexec
 substitute var1: mapx = 1
 (1) #00 #MAPX# -> 1
 substitute var1: taskspernode = 2
 (1) #00 #TASKSPERNODE# -> 2
 substitute var1: logdir = $PWD/logs
 (1) #00 #LOGDIR# -> $PWD/logs
 substitute var1: type =
 (1) #00 #TYPE# ->
 (1) #00 #NOTIFICATION# -> never
 substitute var1: executable = $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/IMB_Intel-Neha ...
 (1) #01 #EXECUTABLE# -> $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB...
 substitute var1: nodes = 1
 (1) #01 #NODES# -> 1
 (1) #01 #PREPROCESS# ->
 substitute var1: stdoutlogfile = $PWD/logs/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001.n1p2t1_t001_i01_stdout.log ...
 (1) #01 #STDOUTLOGFILE# -> $PWD/logs/IMB_Intel-Nehalem-HPC-FF_IM...
 (1) #01 #TIME_LIMIT# -> 00:02:00
 substitute var1: mapy = 2

3. Using JuBE 13

 (1) #00 #MAPY# -> 2
 (1) #01 #MEASUREMENT# ->
 substitute var1: msglen = -msglen lengths.dat
 substitute var1: input = -input benchmarks.dat
 substitute var1: multi = multi 1
 (1) #01 #ARGS_EXECUTABLE# -> -input benchmarks.dat -msglen lengths.dat multi 1
 (1) #01 #POSTPROCESS# ->
 substitute var2: mapx = 1
 substitute var2: mapy = 2
 (1) #00 #MAP# -> -map 1x2
 substitute var1: benchname = IMB
 (1) #01 #BENCHNAME# -> IMB
 (1) #01 #NOTIFY_EMAIL# -> a.schnurpfeil@fz-juelich.de
 substitute var1: nodes = 1
 substitute var1: ncpus = 2
 eval 2 -> -np 2 >`1 * 2`<
 (2) #00 #ARGS_STARTER# -> -np 2
 substitute var1: outdir = $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01
 (2) #00 #OUTDIR# -> $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB...
 substitute var1: ncpus = 2
 (2) #00 #NCPUS# -> 2
 substitute var1: stderrlogfile = $PWD/logs/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001.n1p2t1_t001_i01_stderr.log ...
 (2) #00 #STDERRLOGFILE# -> $PWD/logs/IMB_Intel-Nehalem-HPC-FF_IM...
 substitute var1: threadspertask = 1
 (2) #00 #THREADSPERTASK# -> 1
 (2) #00 #STARTER# -> mpiexec
 substitute var1: mapx = 1
 (2) #00 #MAPX# -> 1
 substitute var1: taskspernode = 2
 (2) #00 #TASKSPERNODE# -> 2
 substitute var1: logdir = $PWD/logs
 (2) #00 #LOGDIR# -> $PWD/logs
 substitute var1: type =
 (2) #00 #TYPE# ->
 (2) #00 #NOTIFICATION# -> never
 substitute var1: executable = $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001/n1p2t1_t001_i01/IMB_Intel-Neha ...
 (2) #00 #EXECUTABLE# -> $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB...
 substitute var1: nodes = 1
 (2) #00 #NODES# -> 1
 (2) #00 #PREPROCESS# ->
 substitute var1: stdoutlogfile = $PWD/logs/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000001.n1p2t1_t001_i01_stdout.log ...
 (2) #00 #STDOUTLOGFILE# -> $PWD/logs/IMB_Intel-Nehalem-HPC-FF_IM...
 (2) #00 #TIME_LIMIT# -> 00:02:00
 substitute var1: mapy = 2
 (2) #00 #MAPY# -> 2
 (2) #00 #MEASUREMENT# ->
 substitute var1: msglen = -msglen lengths.dat
 substitute var1: input = -input benchmarks.dat
 substitute var1: multi = multi 1
 (2) #00 #ARGS_EXECUTABLE# -> -input benchmarks.dat -msglen lengths.dat multi 1
 (2) #00 #POSTPROCESS# ->
 substitute var2: mapx = 1
 substitute var2: mapy = 2
 (2) #00 #MAP# -> -map 1x2
 substitute var1: benchname = IMB
 (2) #00 #BENCHNAME# -> IMB
 (2) #00 #NOTIFY_EMAIL# -> a.schnurpfeil@fz-juelich.de
 -> submit job command: [debug] qsub -q sun intel_PBSsubmit.job

--
 JUBE: used id: 1
--

3. Using JuBE 14

 Benchmark-Suite: ending at Thu Jul 16 09:10:20 2009
--
schnural@zam009:~/SUBVERSION/JuBE/applications/IMB>

JuBE gives a lot of information about the substituted data and the settings and thankfully terminates normally.
The compilation step shows no errors and the configurations in the XML files are accepted by JuBE. Only
some substitutions went wrong:

unknown vars in $lflags: lflags
 (2) #00 #LFLAGS# -> $lflags

JuBE wasn't able to substitute #LFLAGS# because we didn't define $lflags before. But in this case it doesn't
matter, because this value isn't needed for the benchmark run. When JuBE runs the first time it creates a
couple of directories whithin JuBE/application/IMB:

benchlog/•
logs/•
results/•
tmp/•
xmllogs/•

The benchlog/ directory includes files with general information about the benchmark settings. It's very similar
to the information given on the command line when you start JuBE (see the example above). Each file has a
special labeling including the identifier. As mentioned before the identifier is stored in .bench_current_id.dat
and will be increased by 1 whenever JuBE is invoked for starting the debug procedure and a benchmark run
respectively. 'logs/' includes the standard output and the standard error output, results/ includes the results
from the analyse step, we come back to this later. The xmllogs/ directory inlcudes XML files that contain all
information of the corresponding benchmark run. So it is theoretically possible to reproduce the full run by
just considering the XML logfiles. You are free to have a look at the logfiles in your text editor but it is really
difficult to read. To make things easier we also provide a XSL template file and a CSS file in xmllogs/. So it is
possible to regard the logfiles <whatever>.longlog with your browser in a formatted manner. The
longlog-files will be created when the analyse step is triggered (more on that below). However this procedure
doesn't work for all browsers. While konqueror doesn't provide XSLT, the files can be loaded in firefox
without problems. If the browser refuses to load the longlog-files just append .xml at the filename.

Now we invoke JuBE without the debug options and than we will have a look at the logs/ and tmp/ directory:

jube -start jube-Intel-Nehalem-HPC-FF.xml -verbose 5

JuBE compiles the software package and executes the job. If you want to avoid the compilation for each run
just change the version attribute in the top level file from new to reuse. The main results are stored in the log/
directory:

IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002.n1p2t1_t001_i01_stderr.log•
IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002.n1p2t1_t001_i01_stdout.log•

Opening IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002.n1p2t1_t001_i01_stdout.log in a text
editor gives:

Calling sequence was:

/home/schnural/SUBVERSION/JuBE/applications/IMB/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002/n1p2t1_t001_i01/IMB_Intel-Nehalem-HPC-FF_cname_Intel-Nehalem-HPC-FF.exe -input benchmarks.dat -msglen lengths.dat multi 1

3. Using JuBE 15

Message lengths were user defined
#
MPI_Datatype : MPI_BYTE
MPI_Datatype for reductions : MPI_FLOAT
MPI_Op : MPI_SUM
#
#

Attention, invalid benchmark name(s):
multi
1

List of valid benchmarks:
#
PingPong
PingPing
Sendrecv
Exchange
Allreduce
Reduce
Reduce_scatter
Allgather
Allgatherv
Gather
Gatherv
Scatter
Scatterv
Alltoall
Alltoallv
Bcast
Barrier

List of Benchmarks to run:

PingPong

#---
Benchmarking PingPong
#processes = 2
#---
 #bytes #repetitions t[usec] Mbytes/sec
 0 1000 0.32 0.00
 1 1000 0.32 3.00
 10 1000 0.34 27.85
 100 1000 0.34 280.50
 1000 1000 0.61 1563.11
 10000 1000 2.21 4305.71
 100000 419 11.57 8244.79

All processes entering MPI_Finalize

Now we swap to the tmp/ directory which includes all files that are necessary for the corresponding
benchmark runs in unique identified subdirectories:

JuBE/applications/IMB/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002/n1p2t1_t001_i01/
IMB_Intel-Nehalem-HPC-FF_cname_Intel-Nehalem-HPC-FF.exe♦

•

3. Using JuBE 16

benchmarks.dat♦
benchmarks.dat.in♦
compile_err.log♦
compile_out.log♦
end_info.xml♦
execute_err.log♦
execute_out.log♦
intel_PBSsubmit.job♦
intel_PBSsubmit.job.in♦
lengths.dat♦
src/♦
start_info.xml♦

It's a good idea to collect the templates as well as the substitutes files here so can easily check if all
substitutions were fulfilled if the preocedure terminates with an error. It's not necessary to consider each file.
They are mentioned in order to give you a guideline and hints if you do the integration by yourself.

At the end of the tutorial we want to give you a short introduction in how JuBE can be used to extract and
organize your results, so we go back to the main IMB/ directory:

JuBE/applications/IMB/

Now let us trigger the analyse step and explain the options:

jube -result -update 2 -verbose 5 -force -showall

The results should look like this:

schnural@zam009:~/SUBVERSION/JuBE/applications/IMB> jube -result -update 2 -verbose 5 -force -showall
 Looking for new log files with spec #2
 Looking for log files with spec #2
--
 Benchmark-Suite: starting at Thu Jul 16 10:16:11 2009
--
 jube version 1.1p17
--
 OPTIONS: update = 1
 OPTIONS: result = 1
--
 OPTIONS: force update = 1
 OPTIONS: verbose = 5
 OPTIONS: Compile XML-file = $PWD/compile.xml
 OPTIONS: benchlogfile = $PWD/benchlog/benchresultlog_000003.log
 OPTIONS: configdir = $PWD
 OPTIONS: platformdir = /home/schnural/SUBVERSION/JuBE/bench/../platform
--
---> processing $PWD/analyse.xml ...
parsing $PWD/analyse.xml in 0.0864 sec
---> processing $PWD/verify.xml ...
parsing $PWD/verify.xml in 0.0112 sec
--
 JUBE: update, parsing: $PWD/xmllogs/benchlog_IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002_n1p2t1_t001_i01.log
 parsing $PWD/xmllogs/benchlog_IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002_n1p2t1_t001_i01.log in 0.1016 sec bench=IMB_3.2_latency
 job: started at Thu Jul 16 09:47:34 CEST 2009
 job: ended at Thu Jul 16 09:47:35 CEST 2009
 job: stdout 2310 bytes

3. Using JuBE 17

 job: stderr 611 bytes
 substitute var1: stdoutfile = $PWD/logs/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002.n1p2t1_t001_i01_stdout.log
 substitute var1: stderrfile = $PWD/logs/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002.n1p2t1_t001_i01_stderr.log
 substitute var1: subdir = $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002/n1p2t1_t001_i01
 verify IMB_3.2 cmd=>
 run/check_results_imb.pl $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002/n1p2t1_t001_i01/verify. ...
 executing: (
 run/check_results_imb.pl $PWD/tmp/IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002/n1p2t1_t001_i01/verify.xml /home/ ...
 job: verify done IMB_3.2
 job: verify, bench no results
 analyse cname=>IMB_3.2<
 analyse2 cname=>IMB_3.2<
 search for PingPong --> MBytes/sec (\s+100000\s+$patnint\s+$patnfp\s+$patfp)
 substitute var1: patnint = [\+\-\d]+
 substitute var1: patnfp = [\+\-\d.Ee]+
 substitute var1: patfp = ([\+\-\d.Ee]+)
 found PingPong --> 8244.79 MBytes/sec (\s+100000\s+[\+\-\d]+\s+[\+\-\d.Ee]+\s+([\+\-\d.Ee]+))
 search for test --> ($PingPong*$taskspernode)
 unknown vars in $PingPong*$taskspernode: PingPong,taskspernode
 substitute var1: taskspernode = 2
 substitute var1: PingPong = 8244.79
 eval 16489.58 -> 16489.58 >`8244.79*2`<
 derived[1] test --> 16489.58 ($PingPong*$taskspernode)
 job: analyse done
 job: analyse, bench no results
---> processing $PWD/result.xml
 executing: mv $PWD/xmllogs/benchlog_IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002_n1p2t1_t001_i01.log.new /home/schnural/SUBVERSION/JuBE ...
parsing $PWD/result.xml in 0.0047 sec
 JUBE: result, parsing $PWD/xmllogs/benchlog_IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002_n1p2t1_t001_i01.log
 parsing $PWD/xmllogs/benchlog_IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002_n1p2t1_t001_i01.log in 0.1021 sec

IMB_Intel-Nehalem-HPC-FF_IMB_3.2_latency_i000002
==
 Subid taskspernode nodes PingPong test
 ------------------------------ ---------------------- ---------------------- ---------------------- ----------------------
 n1p2t1_t001_i01 2 1 8244.79 16489.58

Keylist: PingPong,analyse_cname,ar,arflags,benchhome,benchname,blas_dir,blas_lib,cc,cflags,cname,compile_cname,compile_version,cpp,cppflags,cxx,cxxflags,execname,execute_cname,f77,f77flags,f90,f90flags,fft_inc,fft_lib,fft_version,fftlib,id,identifier,input,iter,iteration,jobenddate,ldflags,make,mapx,mapy,mem,mkl_inc,mkl_lib,mkl_version,mkllib,module_cmd,mpi_bin,mpi_cc,mpi_cxx,mpi_dir,mpi_f77,mpi_f90,mpi_inc,mpi_lib,msglen,multi,name,ncpus,nodes,npmin,outdir,pdir,platform,prepare_cname,ranlib,rm,rundir,stderrfile,stdoutfile,subdir,subid,tasks,taskspernode,test,threadspertask,time,type,vcheck,vcomment,verify_cname,vval1,vval2,vvalref1,vvalref2,
--
 Benchmark-Suite: ending at Thu Jul 16 10:16:11 2009
--

The tabel at the end of this output will also be stored in the result/ directory. If it's not clear to you, why we
get the displayed table please have a look at the definitions given in analyse.xml and result.xml. -result tells
JuBE to start the analyse step and the -update option has to be set if you want to create the result table a
second time. Normally it is not necessary to set -update in the first time but nevertheless we recommend
always to set this option to make things consistent. If you use -update without an argument the update will be
applied to all available results. If you want to update the results only for a specific run, let's say the run with
the identifier 2, than please use -update followed by the identifier like in the example above.
The -force option makes sure that the results will be extracted when JuBE is invoked more than one time for
the analyse step.
At long last if you don't have a pattern for the walltime JuBE will assume that the benchmark run fails and
refuses to create the result table. In order to avoid this behaviour you have to set the -showall or -sh option.

This tutorial intends to give you a short introduction in JuBE. There are a lot of more features which are not
covered by this tutorial. But nevertheless it gives you a profound basis for your work with this nice peace of
software and it will simplify your live concerning benchmarking. We highly recommend to reproduce the

3. Using JuBE 18

integration given in this tutorial and to play around with configuration settings, the patterns and the options
that come along with JuBE.

Good luck!

3. Using JuBE 19

	tmp1eqRzzwikitopdf

