
targetDP Specification

Version 0.1.0

Alan Gray and Kevin Stratford

January 15, 2016



Contents

1 Introduction 2

2 Execution model 4

3 Memory model 6

3.1 Model overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Memory Management 8

4.1 targetMalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 targetCalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3 targetMallocUnified . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.4 targetCallocUnified . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.5 targetFree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.6 copyToTarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.7 copyFromTarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.8 copyDeepDoubleArrayToTarget . . . . . . . . . . . . . . . . . . . 16

4.9 copyDeepDoubleArrayFromTarget . . . . . . . . . . . . . . . . . . 17

4.10 targetZero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.11 targetSetConstant . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.12 targetConst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.13 copyConstToTarget . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.14 copyConstFromTarget . . . . . . . . . . . . . . . . . . . . . . . . 22

4.15 targetConstAddress . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.16 targetInit3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



CONTENTS

4.17 targetFinalize3D . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.18 copyToTargetPointerMap3D . . . . . . . . . . . . . . . . . . . . . 26

4.19 copyFromTargetPointerMap3D . . . . . . . . . . . . . . . . . . . 27

5 Data Parallel Execution 28

5.1 targetEntry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 targetHost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 targetLaunch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 targetSynchronize . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6 targetTLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.7 targetILP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.8 targetCoords3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.9 targetIndex3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Example 38

1



Chapter 11

Introduction2

It is becoming increasingly difficult for applications to exploit modern comput-3

ers, which continue to increase in complexity and diversity with features includ-4

ing multicore/manycore CPUs, vector floating point units, accelerators such as5

GPUs and non-uniform distributed memory spaces. From a scientist’s perspec-6

tive, it is not only imperative to achieve performance, but also to retain main-7

tainability, sustainability and portability. The use of a simplistic, well structured8

and clearly defined abstraction layer such as targetDP can allow the program-9

mer to express the scientific problems in a way that will automatically achieve10

good performance across the range of leading hardware solutions.11

The targetDP API (first introduced in [1]) provides an abstraction layer12

which allows applications to target Data Parallel hardware in a platform agnos-13

tic manner, by abstracting the memory spaces and hierarchy of hardware par-14

allelism. Applications written using targetDP syntax are performance portable:15

the same source code can be compiled for different targets (where we currently16

support GPU accelerators and modern multicore or manycore SIMD CPUs),17

without performance overheads. The model is appropriate for abstracting the18

parallelism contained within each compute node, and can be combined with,19

e.g. MPI to allow use on systems containing multiple nodes. The targetDP API20

is primarily aimed at the types of parallelism found in grid-based applications,21

but may be applicable to a wider class of problems.22

The targetDP memory and execution models are described in Chapters 2 and23

3 respectively, and the document goers on to specify the memory management24

functionality in Chapter 4 and data parallel execution functionality in Chapter 5.25

Implementation details are also provided for the existing C and CUDA versions26

2



of targetDP throughout these chapters. Finally, a simple example is given to1

demonstrate usage in Chapter 6.2

Glossary3

• CPU: Central Processing Unit. The main computer chip used in a system,4

suitable for a wide variety of computational tasks.5

• Accelerator: A processing unit which is not used in isolation, but instead6

in tandem with the CPU, with the aim of improving the performance of7

key code sections.8

• GPU: Graphics Processing Unit. A type of accelerator, originally evolved9

to render graphics content (particularly to satisfy demands of the gaming10

industry), but now widely used for general purpose computation.11

• Host: Another term for the CPU that “hosts” the application.12

• Data Parallel: The type of algorithmic parallelism involved where a13

single operation is performed to each element of a data set. The extent of14

parallelism is determined by the size of the data set.15

• Target: The device targeted for execution of data parallel operations.16

Depending on the underlying hardware available, the target could simply17

be the a CPU, or it could be a separate device such as an accelerator.18

• CUDA: Compute Unified Device Architecture. The parallel platform and19

model created by NVIDIA to allow general purpose programming of their20

GPU architectures.21

• TLP: Thread Level Parallelism.22

• ILP: Instruction Level Parallelism.23

3



Chapter 21

Execution model2

The terminology “host” is used to refer to the CPU that is hosting the execution3

of the application, and “target” refers to the device targeted for execution of4

data parallel operations. The target could be the same CPU as the host, or it5

could be a separate device such as an accelerator (depending on the hardware6

available).7

The targetDP API follows the fork-join model of parallel execution. When8

the application initiates, a single thread executes sequentially on the host, until9

it encounters a function to be launched on the target. This function will be exe-10

cuted by a team of threads on the target cooperating in a data-parallel manner11

(e.g. for a structured grid problem each thread is responsible for a subset of12

the grid). Each thread in the team will have a unique index. For some architec-13

tures, it is important to expose not just thread-level parallelism (TLP), but also14

instruction-level parallelism (ILP). The targetDP model facilitates this by allow-15

ing striding at the thread level, such that each thread can operate on a chunk of16

data (e.g. multiple grid points) at the instruction level. The size of the chunk,17

which we call the “Virtual Vector Length” (VVL), can be tuned to the hardware.18

To ensure that the target function has completed, a targetSynchronize19

statement should follow the code location where target function is launched.20

When the initial thread encounters this statement, it will wait until the target21

region has completed. It is possible, in principle, for the initial thread to execute22

other instructions (which do not depend on the results of the target function),23

after the function launch but before the synchronisation call. This may result24

in overlapping of host and target execution, and hence optimisation, in some25

implementations. Once the target function has completed, the initial thread26

4



will continue sequentially until another target function launch is encountered.1

Within each target function, each thread is given a unique index which it2

uses to work in a data-parallel manner. Each thread works independently from3

all others, but usually operating on a shared data structure where the index is4

used to determine the portion of data to process.5

In applications, it is sometimes necessary to perform reductions, where mul-6

tiple data values are combined in a certain way. For example, values existing on7

each grid point may be summed into a single total value. The targetDP model8

supports such operations in a simplistic way. It is the responsibility of the appli-9

cation to create the array of values (using standard targetDP functionality) to10

act as the input to the reduction operation. The application can then pass this11

array to the API function corresponding to the desired reduction operation (e.g.12

targetDoubleSum for the summation of an array of double-precision Values). If13

the required reduction operation does not yet exist, the user can simply extend14

the targetDP API using existing functionality as a template.15

5



Chapter 31

Memory model2

3.1 Model overview3

The targetDP model draws a distinction between the memory space accessed by4

the host and that accessed by the target. Even although there is a trend towards5

“unified” address spaces, on which this distinction is not strictly required for6

applications to run successfully, such visibility at the application level is often7

crucial to allow good performance when running on those target architectures8

that have associated high-bandwidth memory systems (such as GPU and Intel9

Xeon Phi architectures). In the targetDP model, it is assumed that code exe-10

cuted on the host always accesses the host memory space, and code executed11

on the target (i.e. within target functions) always accesses the target memory12

space. The host memory space can be initialised using regular C/C++ function-13

ality, and the targetDP API provides the functionality necessary to manage the14

target memory space and transfer data between the host and target. For each15

data-parallel data structure, the programmer should create both host and target16

copies, and should update these from each other as and when required.17

3.1.1 Host memory model18

The sequential thread executing host code should always access host data struc-19

tures. The memory model is the same as one would expect from a regular20

sequential application.21

6



3.2. IMPLEMENTATION

3.1.2 Target memory model1

The team of threads performing the execution of target functions should always2

act on target data structures. These data structures can take one of 3 forms:3

1. Those created using the targetDP memory allocation API functions. These4

are shared between all threads in the team, where each thread should use5

its unique index to access the portion of data for which it is responsible.6

2. Those created using the targetDP constant data management functionality.7

These are read-only and normally used for relatively small amounts of8

constant data.9

3. Those declared within the body of a target function. These are private to10

each thread in the team and should be used for temporary scratch struc-11

tures.12

3.2 Implementation13

3.2.1 C14

The target memory structures will exist on the same physical memory as the host15

structures. The implementation may either use separate target copies (managed16

using regular C/C++ memory management functionality), or use pointer alias-17

ing for the target versions such that a reference to any part of a target structure18

will correspond to exactly the same physical address as that of the correspond-19

ing host structure.20

3.2.2 CUDA21

The target memory space will exist on the distinct GPU memory, i.e. in a sepa-22

rate memory space from the host structures.23

7



Chapter 41

Memory Management2

This chapter specifices the memory management functionality in targetDP.3

8



4.1. TARGETMALLOC

4.1 targetMalloc1

4.1.1 Description2

The targetMalloc function allocates memory on the target.3

4.1.2 Syntax4

void targetMalloc(void** targetPtr, size_t n);5

• targetptr: A pointer to the allocated memory.6

• n: The number of bytes to be allocated.7

4.1.3 Example8

See Line 1 in Figure 6.3 in Section 6.9

4.1.4 Implementation10

C11

malloc12

CUDA13

cudaMalloc14

9



4.2. TARGETCALLOC

4.2 targetCalloc1

4.2.1 Description2

The targetCalloc function allocates, and initialises to zero, memory on the3

target.4

4.2.2 Syntax5

void targetCalloc(void** targetPtr, size_t n);6

• targetptr: A pointer to the allocated memory.7

• n: The number of bytes to be allocated.8

4.2.3 Example9

Analogous to Line 1 in Figure 6.3 in Section 6.10

4.2.4 Implementation11

C12

calloc13

CUDA14

cudaMalloc followed by cudaMemset15

10



4.3. TARGETMALLOCUNIFIED

4.3 targetMallocUnified1

4.3.1 Description2

The targetMallocUnified function allocates unified memory that can be ac-3

cessed on the host or the target. This should be used with caution since it may4

result in poor performance relative to use of targetMalloc.5

4.3.2 Syntax6

void targetMallocUnified(void** targetPtr, size_t n);7

• targetptr: A pointer to the allocated memory.8

• n: The number of bytes to be allocated.9

4.3.3 Example10

Analogous to Line 1 in Figure 6.3 in Section 6.11

4.3.4 Implementation12

C13

malloc14

CUDA15

cudaMallocManaged16

11



4.4. TARGETCALLOCUNIFIED

4.4 targetCallocUnified1

4.4.1 Description2

The targetCallocUnified function allocates, and initialises to zero, unified3

memory that can be accessed on the host or the target. This should be used with4

caution since it may result in poor performance relative to use of targetCalloc.5

4.4.2 Syntax6

void targetCallocUnified(void** targetPtr, size_t n);7

• targetptr: A pointer to the allocated memory.8

• n: The number of bytes to be allocated.9

4.4.3 Example10

Analogous to Line 1 in Figure 6.3 in Section 6.11

4.4.4 Implementation12

C13

calloc14

CUDA15

cudaMallocManaged followed by cudaMemset16

12



4.5. TARGETFREE

4.5 targetFree1

4.5.1 Description2

The targetFree function deallocates memory on the target.3

4.5.2 Syntax4

void targetFree(void* targetPtr);5

• targetPtr: A pointer to the memory to be freed.6

4.5.3 Example7

See Line 11 in Figure 6.3 in Section 6.8

4.5.4 Implementation9

C10

free11

CUDA12

cudaFree13

13



4.6. COPYTOTARGET

4.6 copyToTarget1

4.6.1 Description2

The copyToTarget function copies data from the host to the target.3

4.6.2 Syntax4

void copyToTarget(void* targetData, const void* data, size_t n);5

• targetData: A pointer to the destination array on the target.6

• data: A pointer to the source array on the host.7

• n: The number of bytes to be copied.8

4.6.3 Example9

See Line 3 in Figure 6.3 in Section 6.10

4.6.4 Implementation11

C12

memcpy13

CUDA14

cudaMemcpy15

14



4.7. COPYFROMTARGET

4.7 copyFromTarget1

4.7.1 Description2

The copyFromTarget function copies data from the target to the host.3

4.7.2 Syntax4

void copyFromTarget(void* data, const void* targetData, size_t n);5

• data: A pointer to the destination array on the host.6

• targetData: A pointer to the source array on the target.7

• n: The number of bytes to be copied.8

4.7.3 Example9

See Line 9 in Figure 6.3 in Section 6.10

4.7.4 Implementation11

C12

memcpy13

CUDA14

cudaMemcpy15

15



4.8. COPYDEEPDOUBLEARRAYTOTARGET

4.8 copyDeepDoubleArrayToTarget1

4.8.1 Description2

The copyDeepDoubleArrayToTarget function copies an array of double preci-3

sion values from the host to the target, where the array is contained within4

another object.5

4.8.2 Syntax6

void copyDeepDoubleArrayToTarget(void* targetObjectAddress,7

void* hostObjectAddress,void* hostComponentAddress,size_t n);8

• targetObjectAddress: A pointer to the target copy of the object that9

contains the data array.10

• hostObjectAddress: A pointer to the host copy of the object that contains11

the data array.12

• hostComponentAddress: A pointer to the host copy of the start of the13

array contained within the object.14

• n: The number of elements to be copied.15

4.8.3 Implementation16

C17

Pointer arithmetic to determine memory locations, followed by memcpy18

CUDA19

Pointer arithmetic to determine memory locations, followed by cudaMemcpy20

16



4.9. COPYDEEPDOUBLEARRAYFROMTARGET

4.9 copyDeepDoubleArrayFromTarget1

4.9.1 Description2

The copyDeepDoubleArrayTFromTarget function copies an array of double pre-3

cision values from the target to the host, where the array is contained within4

another object.5

4.9.2 Syntax6

void copyDeepDoubleArrayFromTarget(void* hostObjectAddress,7

void* targetObjectAddress,void* hostComponentAddress,size_t n);8

• hostObjectAddress: A pointer to the host copy of the object that contains9

the data array.10

• targetObjectAddress: A pointer to the target copy of the object that11

contains the data array.12

• hostComponentAddress: A pointer to the host copy of the start of the13

array contained within the object.14

• n: The number of elements to be copied.15

4.9.3 Implementation16

C17

Pointer arithmetic to determine memory locations, followed by memcpy18

CUDA19

Pointer arithmetic to determine memory locations, followed by cudaMemcpy20

17



4.10. TARGETZERO

4.10 targetZero1

4.10.1 Description2

The targetZero function sets a (double precision) array on the target to zero.3

4.10.2 Syntax4

void targetZero(double* targetData, size_t n);5

• targetData: A pointer to the array on the target.6

• n: The number of elements in the array.7

4.10.3 Implementation8

C9

A loop to zero each element.10

CUDA11

A kernel to zero each element.12

18



4.11. TARGETSETCONSTANT

4.11 targetSetConstant1

4.11.1 Description2

The targetSetConstant function sets each element of a (double precision) ar-3

ray on the target to the specified constant value.4

4.11.2 Syntax5

void targetSetConstant(double* targetData, double value, size_t n);6

• targetData: A pointer to the array on the target.7

• value: The value.8

• n: The number of elements in the array.9

4.11.3 Implementation10

C11

A loop to set each element.12

CUDA13

A kernel to set each element.14

19



4.12. TARGETCONST

4.12 targetConst1

4.12.1 Description2

The __targetConst__ keyword is used in a variable or array declaration to3

specify that the corresponding data can be treated as constant (read-only) on4

the target.5

4.12.2 Syntax6

__targetConst__ type variableName7

• variableName: The name of the variable or array.8

• type: The type of variable or array.9

4.12.3 Example10

See Line 3 in Figure 6.3 in Section 6.11

4.12.4 Implementation12

C13

Holds no value14

CUDA15

__constant__16

20



4.13. COPYCONSTTOTARGET

4.13 copyConstToTarget1

4.13.1 Description2

The copyConstToTarget function copies data from the host to the target, where3

the data will remain constant (read-only) during the execution of functions on4

the target.5

4.13.2 Syntax6

void copyConstToTarget(void* targetData, const void* data, size_t n);7

• targetData: A pointer to the destination array on the target. This must8

have been declared using the __targetConst__ keyword.9

• data: A pointer to the source array on the host.10

• n: The number of bytes to be copied.11

4.13.3 Example12

See Line 4 in Figure 6.3 in Section 6.13

4.13.4 Implementation14

C15

memcpy16

CUDA17

cudaMemcpyToSymbol18

21



4.14. COPYCONSTFROMTARGET

4.14 copyConstFromTarget1

4.14.1 Description2

The copyConstFromTarget function copies data from a constant data location3

on the target to the host.4

4.14.2 Syntax5

void copyConstToTarget(void* targetData, const void* data, size_t n);6

• data: A pointer to the destination array on the host.7

• targetData: A pointer to the source array on the target. This must have8

been declared using the __targetConst__ keyword.9

• n: The number of bytes to be copied.10

4.14.3 Example11

Analogous to Line 4 in Figure 6.3 in Section 6.12

4.14.4 Implementation13

C14

memcpy15

CUDA16

cudaMemcpyFromSymbol17

22



4.15. TARGETCONSTADDRESS

4.15 targetConstAddress1

4.15.1 Description2

The targetConstAddress function provides the target address for a constant3

object.4

4.15.2 Syntax5

void targetConstAddress(void** address, objectType object);6

• address (output): The pointer to the constant object on the target.7

• objectType: The type of the object.8

• object (input): The constant object on the target. This should have been9

declared using the __targetConst__ keyword.10

4.15.3 Implementation11

C12

Explicit copying of address.13

CUDA14

cudaGetSymbolAddress15

23



4.16. TARGETINIT3D

4.16 targetInit3D1

4.16.1 Description2

The targetInit3D initialises the environment required to perform any of the3

“3D” operations described in the rest of this chapter.4

4.16.2 Syntax5

void targetInit3D(size_t extent, size_t nFields);6

• extent: The total extent of data parallelism (e.g. the number of lattice7

sites).8

• nFields: The extent of data resident within each parallel partition (e.g.9

the number of fields per lattice site).10

24



4.17. TARGETFINALIZE3D

4.17 targetFinalize3D1

4.17.1 Description2

The targetFinalize3D finalises the targetDP 3D environment.3

4.17.2 Syntax4

void targetFinalize3D();5

25



4.18. COPYTOTARGETPOINTERMAP3D

4.18 copyToTargetPointerMap3D1

4.18.1 Description2

The copyToTargetPointerMap3D function copies a subset of lattice data from3

the host to the target. The sites to be included are defined using an array of4

pointers passed as input.5

4.18.2 Syntax6

void copyToTargetPointerMap3D(void* targetData, const void* data,7

size_t extent3D[3], size_t nField,8

int includeNeighbours, void** pointerArray);9

• targetData: A pointer to the destination array on the target.10

• data: A pointer to the source array on the host.11

• extent3D: An array of 3 integers corresponding to the 3D dimensions of12

the lattice.13

• nField: The number of fields per lattice site.14

• includeNeighbours: A Boolean switch to specify whether each included15

site should also have it’s neighbours included (in the 19-point 3D stencil).16

• pointerArray: An array of nSite pointers, where nSite is the total num-17

ber of lattice sites. Each lattice site should be included unless the pointer18

corresponding to that site is NULL.19

26



4.19. COPYFROMTARGETPOINTERMAP3D

4.19 copyFromTargetPointerMap3D1

4.19.1 Description2

The copyFromTargetPointerMap3D function copies a subset of lattice data from3

the target to the host. The sites to be included are defined using an array of4

pointers passed as input.5

4.19.2 Syntax6

void copyFromTargetPointerMap3D(void* data, const void* targetData,7

size_t extent3D[3], size_t nField,8

int includeNeighbours, void** pointerArray);9

• data: A pointer to the destination array on the host.10

• targetData: A pointer to the source array on the target.11

• extent3D: An array of 3 integers corresponding to the 3D dimensions of12

the lattice.13

• nField: The number of fields per lattice site.14

• includeNeighbours: A Boolean switch to specify whether each included15

site should also have it’s neighbours included (in the 19-point 3D stencil).16

• pointerArray: An array of nSite pointers, where nSite is the total num-17

ber of lattice sites. Each lattice site should be included unless the pointer18

corresponding to that site is NULL.19

27



Chapter 51

Data Parallel Execution2

This chapter specifices the data parallel execution functionality in targetDP.3

28



5.1. TARGETENTRY

5.1 targetEntry1

5.1.1 Description2

The __targetEntry__ keyword is used in a function declaration or definition3

to specify that the function should be compiled for the target, and that it will be4

called directly from host code.5

5.1.2 Syntax6

__targetEntry__ functionReturnType functionName(...7

• functionName: The name of the function to be compiled for the target.8

• functionReturnType: The return type of the function.9

• ... the remainder of the function declaration or definition.10

5.1.3 Example11

See Line 5 in Figure 6.2 in Section 6.12

5.1.4 Implementation13

C14

Holds no value.15

CUDA16

__global__17

29



5.2. TARGET

5.2 target1

5.2.1 Description2

The __target__ keyword is used in a function declaration or definition to spec-3

ify that the function should be compiled for the target, and that it will be called4

from a targetEntry or another target function.5

5.2.2 Syntax6

__target__ functionReturnType functionName(...7

• functionName: The name of the function to be compiled for the target.8

• functionReturnType: The return type of the function.9

• ... the remainder of the function declaration or definition.10

5.2.3 Example11

Analogous to Line 5 in Figure 6.2 in Section 6.12

5.2.4 Implementation13

C14

Holds no value.15

CUDA16

__device__17

30



5.3. TARGETHOST

5.3 targetHost1

5.3.1 Description2

The __targetHost__ keyword is used in a function declaration or definition to3

specify that the function should be compiled for the host.4

5.3.2 Syntax5

__targetHost__ functionReturnType functionName(...6

• functionName: The name of the function to be compiled for the host.7

• functionReturnType: The return type of the function.8

• ... the remainder of the function declaration or definition.9

5.3.3 Example10

Analogous to Line 5 in Figure 6.2 in Section 6.11

5.3.4 Implementation12

C13

Holds no value.14

CUDA15

extern ‘‘C’’ __host__16

31



5.4. TARGETLAUNCH

5.4 targetLaunch1

5.4.1 Description2

The __targetLaunch__ syntax is used to launch a function across a data parallel3

target architecture.4

5.4.2 Syntax5

functionName __targetLaunch__(size_t extent) \6

(functionArgument1,functionArgument2,...);7

• functionName: The name of the function to be launched. This function8

must be declared as __targetEntry__ .9

• functionArguments: The arguments to the function functionName10

• extent: The total extent of data parallelism.11

5.4.3 Example12

See Line 6 in Figure 6.3 in Section 6.13

5.4.4 Implementation14

C15

Holds no value.16

CUDA17

CUDA <<<...>>> syntax.18

32



5.5. TARGETSYNCHRONIZE

5.5 targetSynchronize1

5.5.1 Description2

The targetSynchronize function is used to block until the preceding __targetLaunch__3

has completed.4

5.5.2 Syntax5

void targetSynchronize();6

5.5.3 Example7

See Line 7 in Figure 6.3 in Section 6.8

5.5.4 Implementation9

C10

Dummy function.11

CUDA12

cudaThreadSynchronize13

33



5.6. TARGETTLP

5.6 targetTLP1

5.6.1 Description2

The __targetTLP__ syntax is used, within a __targetEntry__ function, to3

specify that the proceeding block of code should be executed in parallel and4

mapped to thread level parallelism (TLP). Note that he behaviour of this op-5

eration depends on the defined virtual vector length (VVL), which controls the6

lower-level Instruction Level Parallelism (ILP) (see following section).7

5.6.2 Syntax8

__targetTLP__(int baseIndex, size_t extent)9

{10

//code to be executed in parallel11

}12

• extent: The total extent of data parallelism, including both TLP and ILP13

• baseIndex: the TLP index. This will vary from 0 to extent-VVL with14

stride VVL. This index should be combined with the ILP index to access15

shared arrays within the code block (see following section).16

5.6.3 Example17

See Line 8 in Figure 6.2 in Section 6.18

5.6.4 Implementation19

C20

OpenMP parallel loop.21

CUDA22

CUDA thread lookup.23

34



5.7. TARGETILP

5.7 targetILP1

5.7.1 Description2

The __targetILP__ syntax is used, within a __targetTLP__ region, to specify3

that the proceeding block of code should be executed in parallel and mapped to4

instruction level parallelism (ILP), where the extent of the ILP is defined by the5

virtual vector length (VVL) in the targetDP implementation (see 2).6

5.7.2 Syntax7

__targetILP__(int vecIndex)8

{9

//code to be executed in parallel10

}11

• baseIndex: the ILP index. This will vary from 0 to VVL-1. This index12

should be combined with the TLP index to access shared arrays within the13

code block (see previous section).14

5.7.3 Example15

See Line 13 in Figure 6.2 in Section 6.16

5.7.4 Implementation17

C18

Short vectorizable loop.19

CUDA20

Short vectorizable loop.21

35



5.8. TARGETCOORDS3D

5.8 targetCoords3D1

5.8.1 Description2

The targetCoords3D function provides the 3D lattice coordinates correspond-3

ing to a specified linear index.4

5.8.2 Syntax5

void targetCoords3D(int coords3D[3], int extent3D[3], int index);6

• coords3D (output): an array of 3 integers to be populated with the 3D7

coordinates.8

• extent3D (input): An array of 3 integers corresponding to the 3D dimen-9

sions of the lattice.10

• index (input): the linear index.11

36



5.9. TARGETINDEX3D

5.9 targetIndex3D1

5.9.1 Description2

The targetIndex3D function returns the linear index corresponding to a speci-3

fied set of 3D lattice coordinates.4

5.9.2 Syntax5

int targetIndex3D(int Xcoord,int Ycoord,int Zcoord,int extent3D[3]);6

• Xcoord (input): the specified coordinate in the X direction.7

• Ycoord (input): the specified coordinate in the Y direction.8

• Zcoord (input): the specified coordinate in the Z direction.9

• extent3D (input): an array of 3 integers corresponding to the 3D dimen-10

sions of the lattice.11

37



Chapter 61

Example2

Consider a simple example: the scaling of a 3-vector field by a constant, as3

implemented in a sequential programming style in Figure 6.1. On each lattice4

site exists a 3-vector (a collection of three values corresponding to the 3 spatial5

dimensions). The outer loop corresponds to lattice sites, and the inner loop to6

the 3 components within each lattice site. This is a simple example of operations7

on “multi-valued” data, a very common situation in scientific simulations.8

The lattice-based parallelism corresponding to the outer loop can be mapped9

to data parallel hardware using targetDP. We introduce targetDP by replac-10

ing the sequential code with the function given in Figure 6.2. The t_ syn-11

tax is used to identify target data structures. The __targetEntry__ syntax is12

used to specify that this function is to be executed on the target, and it will13

be called from host code. We expose the lattice-based parallelism to each of14

the TLP and ILP levels of hardware parallelism through use of the combina-15

tion __targetTLP__(baseIndex,N) and __targetILP__(vecIndex) (See Sec-16

tions 5.6 and 5.7). The former specifies that lattice-based parallelism should17

be mapped to TLP, where each thread operates on a chunk of lattice sites. The18

latter specifies that the sites within each chunk should be mapped to ILP. It can19

be seen that the t_field array is accessed by combining these indexes. The20

size of the chunk can be set within the targetDP implementation, to give the21

best performance for a particular architecture.22

The scale function is called from host code as shown in Figure 6.3. The23

memory management facilities are used to allocate and transfer data to and24

from the target, as described in Chapter 4.25

38



1fo r ( idx = 0; idx < N; idx++) { // loop over l a t t i c e s i t e s
2i n t iDim ;
3f o r ( iDim = 0; iDim < 3; iDim++)
4f i e l d [ iDim∗N+idx ] = a∗ f i e l d [ iDim∗N+idx ] ;
5}

Figure 6.1: A sequential implementation of the scalar multiplication of each
element of a lattice data structure.

1
2// dec la re cons tant v a r i a b l e
3t a r g e t C o n s t double t a ;
4
5t a r g e t E n t r y void s c a l e ( double∗ t f i e l d ) {
6
7i n t baseIndex ;
8t a r g e t T L P ( baseIndex , N) {
9
10i n t iDim , vecIndex ;
11fo r ( iDim = 0; iDim < 3; iDim++) {
12
13t a r g e t I L P ( vecIndex ) \
14t f i e l d [ iDim∗N + baseIndex + vecIndex ] = \
15t a ∗ t f i e l d [ iDim∗N + baseIndex + vecIndex ] ;
16}
17}
18re turn ;
19}

Figure 6.2: The targetDP implementation of the scalar multiplication kernel.

39



1ta rge tMa l loc (( void ∗∗) &t f i e l d , da t a s i z e ) ;
2
3copyToTarget ( t f i e l d , f i e l d , da t a s i z e ) ;
4copyConstToTarget(& t a , &a , s i z e o f ( double ) ) ;
5
6s c a l e t a r g e t L a u n c h (N) ( t f i e l d ) ;
7ta rge tSynchron ize ( ) ;
8
9copyFromTarget ( f i e l d , t f i e l d , da t a s i z e ) ;
10
11ta rge tF r ee ( t f i e l d ) ;

Figure 6.3: The host code used to invoke the targetDP scalar multiplication
kernel.

40



Bibliography1

[1] Alan Gray and Kevin Stratford, targetDP: an Abstraction of Lattice Based Par-2

allelism with Portable Performance, Proceedings of 2014 IEEE International3

Conference on High Performance Computing and Communications (HPCC),4

312-315 (2014), arxiv.org/abs/1405.61625

41


	Introduction
	Execution model
	Memory model
	Model overview
	Implementation

	Memory Management
	targetMalloc
	targetCalloc
	targetMallocUnified
	targetCallocUnified
	targetFree
	copyToTarget
	copyFromTarget
	copyDeepDoubleArrayToTarget
	copyDeepDoubleArrayFromTarget
	targetZero
	targetSetConstant
	targetConst
	copyConstToTarget
	copyConstFromTarget
	targetConstAddress
	targetInit3D
	targetFinalize3D
	copyToTargetPointerMap3D
	copyFromTargetPointerMap3D

	Data Parallel Execution
	targetEntry
	target
	targetHost
	targetLaunch
	targetSynchronize
	targetTLP
	targetILP
	targetCoords3D
	targetIndex3D

	Example

