
logo

JUBE
Benchmarking Environment

August 4, 2008 | Wolfgang Frings, Marc-André Hermanns, Stefanie Meier

Contents

1 JUBE Page Documentation 5

1.1 Preface . 5
1.2 Introduction . 6
1.3 Getting Started . 6
1.4 Architecture . 9
1.5 Con�guration . 9
1.6 Frequently Asked Questions . 18

1 JUBE Page Documentation

1.1 Preface

1.1.1 About this document

This document is still incomplete in the coverage of all features of JUBE. It will be updated
in the future to complete each chapters and to provide more information on how to use the
benchmarking environment for your purposes.

To contact the developers of JUBE please mail to: jube-jsc@fz-juelich.de.

1.1.2 Disclaimer

Copyright (C) 2008, Forschungszentrum Juelich GmbH, Federal Republic of Germany. All
rights reserved.

Redistribution and use in source and binary forms, with or without modi�cation, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

� Redistributions of source code must retain the above copyright notice, this list of con-
ditions and the following disclaimer.

� Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

� Any publications that result from the use of this software shall reasonably refer to the
Research Centre's development.

� All advertising materials mentioning features or use of this software must display the
following acknowledgement:

This product includes software developed by Forschungszentrum Juelich GmbH, Federal
Republic of Germany.

� Forschungszentrum Juelich GmbH is not obligated to provide the user with any support,
consulting, training or assistance of any kind with regard to the use, operation and
performance of this software or to provide the user with any updates, revisions or new
versions.

mailto:jube-jsc@fz-juelich.de

THIS SOFTWARE IS PROVIDED BY FORSCHUNGSZENTRUM JUELICH GMBH
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
FORSCHUNGSZENTRUM JUELICH GMBH BE LIABLE FOR ANY SPECIAL, DIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNEC-
TION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.

1.2 Introduction

Benchmarking a computer system usually involves numerous tasks, involving several runs
of di�erent applications. Con�guring, compiling, and running a benchmark suite on several
platforms with the accompanied tasks of result veri�cation and analysis needs a lot of ad-
ministrative work and produces a lot of data, which has to be analysed and collected in a
central database. Without a benchmarking environment all these steps have to be performed
by hand.

For each benchmark application the benchmark data is written out in a certain format that
enables the benchmarker to deduct the desired information. This data can be parsed by
automatic pre- and post-processing scripts that draw information, and store it more densely
for manual interpretation.

The JUBE benchmarking environment provides a script based framework to easily create
benchmark sets, run those sets on di�erent computer systems and evaluate the results. It
is actively developed by the Jülich Supercomputing Centre of Forschungszentrum J\"ulich,
Germany.

This document addresses users of benchmarks suites created using the JUBE environment as
well as developers of benchmark suites. Chapter Getting Started gives a brief introduction
into the modi�cations needed to con�gure the benchmark environment on a speci�c platform
as well as a short paragraph on execution and evaluation a benchmark run. The architecture
of the JUBE environment is discussed thoroughly in chapter Con�guration. Short tutorials
on di�erent topics concerning the work with the JUBE environment conclude this document.

1.3 Getting Started

1.3.1 Installation

The DEISA Benchmark Suite can be downloaded from the DEISA website:

www.deisa.eu/science/benchmarking/

By downloading any of the benchmarks from this site, you acknowledge that you have read,
understood and agree to abide by the licence agreement of the DEISA Benchmark Suite as

well as the licence agreements of individual packages, if applicable.

Unpack the DEISA Benchmark Suite into a directory of your choice. For licensing reasons,
the source code of some applications of the benchmark suite cannot be provided directly with
the DEISA Benchmark Suite itself. In these cases you have to obtain the application source
from the relevant download site, as described in the README �les of the individual packages,
and copy the source code into the directory src/ directory inside the application's directory.
These packages are: DL_POLY, Fen�oss and CPMD.

After unpacking the Benchmark Suite the following directory structure is available:

� DEISA_BENCH/

� applications/

� bench/

� doc/

� platform/

� skel/

� LICENCE

� README

The applications/ subdirectory contains the individual benchmark applications. The bench/
subdirectory contains the benchmark environment scripts. The doc/ subdirectory contains
the overall documentation of the benchmark suite. The platform/ subdirectory holds the
platform de�nitions as well as job submission script templates for each de�ned platform.
The skel/ subdirectory contains templates for analysis patterns for text output of di�erent
measurement tools.

1.3.2 Con�guration

1.3.2.1 The platform

Once you have obtained all sources from the applications you want to use in the benchmark,
you can start con�guring the Benchmark Suite for use on your platform.

A platform is de�ned through a set of variables in the platform.xml �le, which can be found
in the platform/ directory. To create a new platform entry, copy an existing platform de-
scription and modify it to �t your local setup. The variables de�ned here will be used by
the individual applications in the later process. Best practice for the platform nomencla-
ture would be: <vendor>-<system_type>-<system_name|site>. Additionally, you have to
create a template batch submission script, which should be placed in a subdirectory of the
platform/ directory of the same name as the platform itself. Although this nomenclature is
not required by the benchmarking environment, it helps keeping track of you templates, and
minimises the amount of adaptation necessary for the individual application con�gurations.

1.3.2.2 The applications

Once a platform is de�ned, each individual application that should be used in the benchmark
needs to be con�gured for this platform. In order to con�gure an individual application,
copy an existing con�guration �le (e.g. bench-IBM-SP5-Jump.xml) to the �le bench-<your_-
platform>.xml. Then open an editor of your choice, to adapt the platform �le to your needs.
Change the settings of the platform parameter to the name of your de�ned platform. The
platform name can then be referenced throughout the benchmarking environment by the
$platform variable.

1.3.3 Execution

Assuming the Benchmark Suite is installed in a directory that can be used during execution,
a typical run of a benchmark application will contain two steps.

1. Compiling and submitting the benchmark to the system scheduler.

2. Verifying, analysing and reporting the performance data.

1.3.3.1 Compiling and submitting

If con�gured correctly, the application benchmark, e.g. SU3, can be compiled and submitted
on the system (e.g. the Cray XT4 system Louhi at CSC) with the commands:

bash-2.05a$ cd DEISA_BENCH/applications/SU3

bash-2.05a$ perl ../../bench/jube bench-Cray-XT4-Louhi.xml

The benchmarking environment will then compile the binary for all node/task/thread combi-
nations de�ned, if those parameters need to be compiled into the binary. It creates a so-called
sandbox subdirectory for each job, ensuring con�ict free operation of the individual applica-
tions at runtime. Iif any input �les are needed, those are prepared automatically as de�ned.

Each active benchmark in the application's top-level con�guration �le will receive an ID, which
is used as a reference by JUBE later on.

1.3.3.2 Verifying, analysing and reporting

After the benchmark jobs have run, an additional call to the benchmarking environment will
gather the performance data. For this, the special parameters -update and -result are used.

bash-2.05a$ cd DEISA_BENCH/application/SU3

bash-2.05a$ perl ../../bench/jube -update -result <ID>

The ID is the reference number the benchmarking environment has assigned to this run. The
performance data will then be output to stdout, and can be post-processed from there.

1.4 Architecture

This section is still under construction.

1.5 Con�guration

1.5.1 De�ning a platform

The JUBE system helps bringing a set of applications to a new platform with the introduction
of several levels of con�guration options. The highest of these levels is the platform itself. Here,
all library paths and con�guration switches for all applications in the benchmark a given for a
speci�c platform. This also means, that all con�guration parameters have to be held as general
as possible to allow di�erent applications to use application speci�c library and compilation
parameters. The next listing shows an example platform de�nition for the IBM SP4 Regatta
system JUMP at the Research Centre J\"ulich.

Listing of the platform.xml containing one platform:

<platforms>

<platform name="IBM-SP4-Jump">

<params

make = "gmake"

rm = "rm -f"

ar = "ar"

arflags = "-rs"

ranlib = "/usr/bin/ranlib"

cpp = "/usr/lib/cpp"

cppflags = "-P"

f77 = "xlf_r"

f77flags = "-qtune=pwr4 -qarch=pwr4"

f90 = "xlf90_r"

f90flags = "-qtune=pwr4 -qarch=pwr4"

cc = "xlc_r"

cflags = "-qtune=pwr4 -qarch=pwr4"

cxx = "xlC_r"

cxxflags = "-qtune=pwr4 -qarch=pwr4"

mpi_f90 = "mpxlf90_r"

mpi_f77 = "mpxlf_r"

mpi_cc = "mpcc_r"

mpi_cxx = "mpCC_r"

ldflags = "-qtune=pwr4 -qarch=pwr4"

mpi_dir = ""

mpi_lib = ""

mpi_inc = ""

mpi_bin = ""

blas_dir = ""

blas_lib = "-lessl"

lapack_dir = "-L/usr/local/lapack/LOCALlib"

lapack_lib = "-llapack -lessl"

fftw3_dir = "-L/usr/local/fftw/LOCALlib"

fftw3_lib = "-lfftw3 -lfftw3_threads -lm"

fftw3_inc = "-I/usr/local/fftw/LOCALinclude"

fftw2_dir = "-L/usr/local/fftw/LOCALlib"

fftw2_lib = "-ldfftw -ldrfftw -ldfftw_threads -ldrfftw_threads -ldfftw_mpi -ldrfftw_mpi -lm"

fftw2_inc = "-I/usr/local/fftw/LOCALinclude"

netcdf3_dir = "-L/usr/local/netcdf/LOCALlib"

netcdf3_lib = "-lnetcdf"

netcdf3_inc = "-I/usr/local/netcdf/LOCALinclude"

module_cmd = "module load"

/>

</platform>

</platforms>

The platform tag de�nes a new platform. Its name is used in di�erent con�guration steps
later on. For each platform de�ned, a subdirectory to platform/ should hold any platform
speci�c �les, such as templates to batch queue submission scripts, etc..

The name of the platform will be used throughout the benchmark run for con�guration pur-
poses, thus a meaningful name can ease later maintenance of the benchmark suite.

1.5.2 Top-Level con�guration of a benchmark

The top level con�guration �le de�nes the benchmark runs for a speci�c benchmark program.
The outermost element <bench> has only two parameter, the benchmark name (here PEPC)
and the platform on which the benchmark will be performed. Both values are used for build-
ing the unique identi�er, and the platform name has to be one of the platforms de�ned in
platform.xml. The bench-element can contain one or more <benchmark> elements describing
a set of benchmark runs. This element has also an attribute for specifying a unique name.
The second attribute 'active' can be used to manage di�erent benchmark run sets. Only
benchmark elements which are active will be processed by JUBE.

Listing of an example top-level con�guration:

<!--

DEISA BENCHMARK SUITE

NBench benchmark configuration schemata for: PEPC

Contact: w.frings@fz-juelich.de

-->

<!--

Choose one of the platforms defined in the toplevel platform.xml

IBM-SP4-Jump

IBM-SP4-Zahir

IBM-PowerPC-MareNostrum

wscheme (walk_scheme) -> 0 (isend/irecv) or 1(coll)

nt -> number of timesteps

npart -> number of particles (ions)

-->

<bench name = "PEPC" platform= "IBM-SP4-Jump" >

<benchmark name="scaling_1" active="1">

<!-- version="reuse|new" -->

<compile cname="$platform" version="new" />

<tasks threadspertask="1" taskspernode="32" nodes="1" />

<params npart="2000000"

nt="10"

wscheme="0,1" />

<prepare cname="PEPC_sphere" />

<execution iteration="1" cname="$platform" />

<verify cname="PEPC" />

<analyse cname="$platform" />

</benchmark>

</bench>

The compile tag describes the compile steps. The cname attribute is a reference to an entry
in compile.xml, one of the additional xml-�les. The attribute version de�nes if the executable
should be generated (new) or if an executable from a former benchmark run with the same
con�guration can be used (reuse).

The tasks tag is the de�nition of the number of cpus used for the benchmark run. Threadsper-
task is the number of OpenMP-Threads, taskspernode the number of MPI task per node and
nodes the number of nodes. The total number of used processors is the product of these
three values. In the �rst example, the attribute taskpernode contain a comma-seperated list
of values. The benchmark run will be performed for each of this values.

The params tag de�nes the input parameters which should be used in the benchmark runs.
The attributes of this element depends on the benchmark program and will be used in the
preparation step for building the program input �le. Each of this attribute van contain a
comma separated list of value. JUBE will automatically generate benchmark runs for all
possible combinations of these parameters and the tasks ranges given in the tasks element.

The prepare tag describes the preparation step. The corresponding element can be found in
the �le prepare.xml.

The execution tag contains a reference (cname) to a element in execute.xml. This �le should
contain for each batch system one entry which can be referenced here. The attribute iteration
de�nes the number of repetitions of a benchmark run. This can be used for measuring random

runtime variations between di�erent runs.

The postprocess tag is currently not used. This step could be used for collecting data, e.g.
gathering data from output �les of each task.

The analyse tag contains a reference (cname) to a element in analyse.xml. In the analyse step
the output �le of the benchmark run will be scanned in respect to the patterns de�ned in
analyse.xml.

1.5.3 The compile step

This �le de�nes all relevant parameters needed for the con�guration and compilation of the
source code. This �le can contain, like the other second-level XML �les, one or more di�erent
elements. The attribute cname must be unique in the �le and de�nes the name under which
it can be selected in the top-level XML �le.

Example compile step de�nition:

<compilation>

<!-- predefined vars:

$outdir -> output directory for temporary compile files

$id -> identifier of this benchmark run

-->

<compile cname="IBM-SP4-Jump">

<!-- Specification of source files to copy into temporary build

directory -->

<src directory="./src" files="configure.in configure config.h.in makefile.in lpepcsrc pepc-b src-config compile.sh.in" />

<!-- Create Makefile and substitute parameters -->

<substitute infile="compile.sh.in" outfile="compile.sh">

<sub from="#EXECNAME#" to="$execname" />

<sub from="#OUTDIR#" to="$outdir" />

<sub from="#CPP#" to="$cpp" />

<sub from="#CPPFLAGS#" to="" />

<sub from="#CC#" to="gcc" />

<sub from="#CFLAGS#" to="" />

<sub from="#FFLAGS#" to="-q64 $f90flags" />

<sub from="#MPI_F90#" to="$mpi_f90" />

<sub from="#LDFLAGS#" to="$ldflags" />

<sub from="#CONFIG_SHELL#" to="/usr/bin/bash" />

<sub from="#MPI_DIR#" to="" />

<sub from="#MPI_LIBS#" to="" />

<sub from="#MAKE#" to="$make" />

<sub from="#RM#" to="$rm" />

<sub from="#AR#" to="$ar" />

<sub from="#ARFLAGS#" to="-X64 $arflags" />

<sub from="#RANLIB#" to="$ranlib" />

<sub from="#F77#" to="$f77" />

<sub from="#F90#" to="$f90" />

<sub from="#F90FLAGS#" to="-q64 $f90flags -O3 -qsuffix=cpp=F90" />

<sub from="#CXX#" to="$cxx" />

<sub from="#CXXFLAGS#" to="-q64 $cxxflags" />

<sub from="#MPI_F77#" to="$mpi_f77" />

<sub from="#MPI_CC#" to="$mpi_cc" />

<sub from="#MPI_CXX#" to="$mpi_cxx" />

<sub from="#LD#" to="$mpi_f90" />

<sub from="#MPI_DIR#" to="$mpi_dir" />

<sub from="#MPI_LIB#" to="$mpi_lib" />

<sub from="#MPI_INC#" to="$mpi_inc" />

<sub from="#MPI_BIN#" to="$mpi_bin" />

<sub from="#BLAS_DIR#" to="$blas_dir" />

<sub from="#BLAS_LIB#" to="$blas_lib" />

<sub from="#LAPACK_DIR#" to="$lapack_dir" />

<sub from="#LAPACK_LIB#" to="$lapack_lib" />

<sub from="#FFTW_DIR#" to="$fftw3_dir" />

<sub from="#FFTW_LIB#" to="$fftw3_lib" />

<sub from="#FFTW_INC#" to="$fftw3_inc" />

<sub from="#NETCDF_DIR#" to="$netcdf3_dir" />

<sub from="#NETCDF_LIB#" to="$netcdf3_lib" />

<sub from="#NETCDF_INC#" to="$netcdf3_inc" />

<sub from="#MODULE_CMD#" to="$module_cmd" />

<sub from="#MODULE_FILES#" to="" />

<!-- "-qautodbl=dbl4" flag overwrites "-qrealsize=8" for "mpi_times.f90" module file. -->

</substitute>

<!-- issue build command -->

<command>sh compile.sh</command>

</compile>

</compilation>

The param tag de�nes parameter for the compilation. Typical parameters are the compiler
�ags, the compiler name and loader name. The values speci�ed in this element will also be
part of the XML �le containing the results of a benchmark program.

The src tag describes the source needed for the compilation. All �les speci�ed by the two
attributes directory and �les are copied to the temporary working directory of the benchmark
run. The src element can speci�ed more than once for copying �les from di�erent directories.

The substitute tag describes the replacement of the parameters in a template �le. Each
substitute can handle the replacement in one �le. This element can also be iterated. The
template has also to be copied by the src element. The placeholders are de�ned in the from
attribute of the sub element. It will be replaced by the value of the to attribute. Possible
variable names which can be used here are the attribute names de�nes in the param element
or the attributes of the elements in the top-level XML �le. There are also some pre-de�ned
variables like $execname for the path and name of the executable.

The command tag de�nes the command which should be used to start the compilation. Typ-
ically this will be a call of make or gmake. It is also possible to start a shell script or to run
con�gure in this place.

1.5.4 The prepare step

The prepare control �le de�nes how the input �le of benchmark should be generated. In
principal this is de�ned by a substitution of placeholders in a template �le.

Example prepare step de�nition:

<preparation>

<prepare cname="PEPC_sphere">

<mkdir directory="data" />

<mkdir directory="dumps" />

<mkdir directory="log" />

<mkdir directory="fields" />

<mkdir directory="fields_pp" />

<input files="input/sphere.h.in input/sphere_start.h.in" />

<substitute infile="sphere.h.in" outfile="run_bench.h">

<sub from="#NPART#" to="$npart" />

<sub from="#WSCHEME#" to="$wscheme" />

<sub from="#NT#" to="$nt" />

</substitute>

<substitute infile="sphere_start.h.in" outfile="run_start.h">

<sub from="#NPART#" to="$npart" />

<sub from="#WSCHEME#" to="$wscheme" />

<sub from="#NT#" to="$nt" />

</substitute>

<command>

(cd $rundir;

perl $benchhome/run/create_pelist.pl $ncpus;

$benchhome/run/make_pes;

$benchhome/run/clean_pes;

)

</command>

</prepare>

</preparation>

The input tag describes the location of template �les.

The substitute tag de�nes the replacements, further description see compile step.

The command tag speci�es a optional command which should executed after the replacements.
In the example above this is a script which creates temporary subdirectories for each processor.

1.5.5 The execution step

This �le contains the description how a the parallel program will be executed. Typically this
is done by a batch job which will be submitted to the local batch system. It can also be a

interactive run of the benchmark program. In this case, the program will be executed directly
from the bench.pl script. Otherwise the job will be submitted and the bench.pl script returns
directly.

Example execution step de�nition:

<execution>

<execute cname="IBM-SP4-Jump">

<input files="../../platform/IBM-SP4-Jump/ibm_llsubmit.job.in" />

<substitute infile="ibm_llsubmit.job.in" outfile="ibm_llsubmit.job">

<sub from="#OUTDIR#" to="$outdir" />

<sub from="#STDOUTLOGFILE#" to="$stdoutlogfile" />

<sub from="#STDERRLOGFILE#" to="$stderrlogfile" />

<sub from="#CLASS#" to="bench" />

<sub from="#BENCHNAME#" to="$benchname" />

<sub from="#NODEUSAGE#" to="not_shared" />

<sub from="#TIME_LIMIT#" to="00:50:00" />

<sub from="#NODES#" to="$nodes" />

<sub from="#TASKSPERNODE#" to="$taskspernode" />

<sub from="#NOTIFICATION#" to="never" />

<sub from="#NOTIFY_EMAIL#" to="email" />

<sub from="#THREADSPERTASK#" to="$threadspertask" />

<sub from="#DATA_LIMIT#" to="3.0Gb" />

<sub from="#STACK_LIMIT#" to="0.5GB" />

<sub from="#MEMORYPERTASK#" to="`3.5*$threadspertask`Gb" />

<sub from="#EXECUTABLE#" to="$executable" />

<sub from="#ENV#" to="$env" />

<sub from="#PREPROCESS#" to="cp run_start.h run.h; poe $executable > preprun_out.log 2> preprun_err.log;$benchhome/run/merge1_dump 000002;cp run_bench.h run.h;(cd ./data/pe0000; ln -sf ../../dumps/parts_dump.000002 ./parts_dump.000002; ln -sf ../../dumps/parts_info.000002 ./parts_info.000002);cp ./dumps/parts_info.000002 ./parts_info.in" />

<sub from="#POSTPROCESS#" to="" />

<sub from="#STARTER#" to="poe" />

<sub from="#ARGS_STARTER#" to="" />

<sub from="#MEASUREMENT#" to="time /usr/local/bin/hpmcount" />

<sub from="#ARGS_EXECUTABLE#" to="" />

</substitute>

<environment>

<env var="MP_LABELIO" value="yes" />

<env var="MP_INFOLEVEL" value="2" />

<env var="MP_SHARED_MEMORY" value="yes" />

<env var="MP_TASK_AFFINITY" value="MCM" />

<env var="MEMORY_AFFINITY" value="MCM" />

<env var="OMP_NUM_THREADS" value="$threadspertask" />

</environment>

<command>llsubmit ibm_llsubmit.job</command>

</execute>

</execution>

The input tag describes the input �le for the batch job or an interactive started script.

The substitute tag de�nes the replacements, further description see compile step.

The environment tag de�nes additional environment variables, the variable $env will contain
this.

The command tag speci�es the which should be used to submit the job or to start the program
interactively.

1.5.6 The veri�cation step

Example veri�cation step de�nition:

<verification>

<!-- predefined vars:

$subdir -> execution dir of benchmark run

$stdoutfile -> $stdout file of bnechmark run

$stderrfile -> $stderr file of bnechmark run

$... -> params from benchmark specification in toplevel dir

-->

<verify cname="PEPC">

<command>run/check_results_pepc.pl $subdir/verify.xml $stdoutfile $stderrfile $subdir</command>

</verify>

</verification>

1.5.7 The analysis step

The con�guration �le for the analysis step contains search pattern for scanning the output
�les (stdout, stderr) of the benchmark run. JUBE accept regular expression as de�ned in
Perl. It is also possible to de�ne derived results varables as expressions of other variables of
the analysis step.

Example analysis step de�nition:

<analyzer>

<!-- Input is stdout and stderr of benchmark run -->

<!-- Standard result parameter:

- walltime

-->

<analyse cname="IBM-SP4-Jump">

<includepattern file="./analyse-pattern-pepc.xml" />

<includepattern file="../../skel/hpm3patterns.xml" />

</analyse>

<!-- for old runs of nbench with cname PEPC -->

<analyse cname="PEPC">

<includepattern file="./analyse-pattern-pepc.xml" />

<includepattern file="../../skel/hpm3patterns.xml" />

</analyse>

</analyzer>

The name tag identi�er for the varible, which will be used as a unique identi�er in the result
XML �le

The unit tag String describing the unit of the measured value, will be used in output tables
and also stored in the result XML �le.

The mode tag can contain one of the following keywords: line (scan line-by-line), line,add
(scan line-by-line and add values if they occurs more than once), derived (no scan, compute
value as expression of other variables)

1.5.8 Generating result tables

There is one addition con�guration �le for describing how results tables printed by JUBE
should be build.

Example result step de�nition:

<result>

<show>

nodes,taskspernode,threadspertask,ncpus,npart,nt,wscheme,

walltime,

HPMwtimeAvg,HPMressizeAvg,HPMFMPpercAvg,HPMpercPeakAvg,HPMflopsCPUglobal,vcheck,vcomment

</show>

<sort>

nt,

npart,

wscheme,

ncpus,

walltime

</sort>

</result>

<!-- do not show

-->

<!-- all

HPMwtimeSum,

HPMwtimeAvg,

HPMutimeSum,

HPMwtimeAvg,

HPMstimeSum,

HPMstimeAvg,

HPMressizeSum,

HPMressizeAvg,

HPMtflopsSum,

HPMtflopsAvg,

HPMflopsWCT,

HPMflopsUser,

HPMFMPpercSum,

HPMFMPpercAvg,

HPMpercPeakSum,

HPMpercPeakAvg,

HPMflopsCPU,

HPMflopsUserCPU,

HPMflopsCPUglobal,

walltime

-->

The name tag identi�er for the varible, which will be used as a unique identi�er in the result
XML �le

The show tag de�nes a list of variables for the columns of the output table. Possible variable
names are the identi�er speci�ed in the analysis step and the params variables of the top-level
XML �le

The sort tag de�nes sort order by a list of variables, each variable can have a �ag (-,+)
indicating whether to sort in descending or ascending order.

1.6 Frequently Asked Questions

This section covers frequently asked question on how to run or con�gure the JUBE environ-
ment.

1.6.1 General questions

1. When I call JUBE with the parameters -update and -result I don't get the
expected results printed. Why?

Each individual analysis pattern has to have at least one entry for the $walltime variable.
If the variable is not set after output analysis, no report on this run will be generated.
The reason for an unset walltime variable can be i) the job did not run yet, ii) the job
ended prematurely and did not output the appropriate line in the output, or iii) the
regular expression de�ned for the walltime variable does not match correctly.

First address for troubleshooting is to check the ouput of stdout and stderr in the
logs/ directory.

2. I would like to run an application with a di�erent numbers of cores than what
is pre-con�gured in the o�cial benchmark �les. In addition to changing the
task tag in the top-level benchmark �le, what other modi�cations I need to
make?

Detailed information on the input data for an individual benchmark is given in its
README. In general the JUBE environment is capable of generating input data tai-
lored to the task description, if the application supports this. This means no other
modi�cations need to be done, while the tasks stay in the supported range.

1.6.2 DEISA Benchmark Suite

1. Where can I get CPMD, DL_POLY, and Fen�oss sources and how can I
import them into the JUBE environment?

The benchmarking harness for those applications is supplied with the benchmark suite.
The README �le of the corresponding application will give detailed information on how
and where to obtain the source code. The harness itself is con�gured in a way that you
only have to place the sources into the src/ directory of the application's benchmarking
harness.

2. Can ECHAM5 benchmark be run with more cores than 496? Are there
any rules (or recommendations) in choosing the parameters "nproca" and
"nprocb"?

3. The application benchmarks are con�gured up to 512 processes. What do I
have to do, to use more than that?

512 processes is the maximum number of processes the DEISA Benchmark Suite has
been tested with. Using more processes will not work on applications where static input
data for a given number of processes is needed. Check the prepare.xml to see how the
input data is prepared for each run, to set it up manually.

	JUBE Page Documentation
	Preface
	Introduction
	Getting Started
	Architecture
	Configuration
	Frequently Asked Questions

