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The aim of this note is to report on the progresses achieved in the evaluation of
the lowest eigenvalues of the non-degenerate Dirac operator by means of the Jacobi-
Davidson (JD) routine, using a bispinor structure.

1 Basics

Since we will propose several tests, we need to recall the basic formulae for the 1-flavour
(denoted by the subscript 1) and for the 2-flavours (denoted by the subscript ND =
Non Degenerate) Dirac operators.
We will work within the twisted mass formalism where the fermionic terms in the action
involve the following operators:

D1 = γ∇̃ − iγ5Wcr + µ , DND = γ∇̃ − iγ5τ1Wcr + µ+ ετ3 ,

Wcr = −
a

2
∇∗∇ +Mcr , Mcr =

1

2κcr

− 4 .

In the above equations, the Pauli matrices operate in flavour space, µ is the twisted
mass term while the real parameter ε denotes the mass splitting between the two
flavours. (Note the different ε-sign convention compared to, among others, that used
in our Lat’05 proceeding, hep-lat/0509154.)
Performing a chiral rotation and by rescaling the quark fields, the Dirac operators can
be rewritten as

D1 =
[

γ∇̃ +Wcr

]

2κ+ iµγ5τ3 , (1)

DND =
[

γ∇̃ +Wcr

]

2κ+ iµγ5τ3 − ετ1 , (2)

where we have also rescaled ε and µ by a factor 2κ, without changing their names. The
situation of maximal twist is obtained by setting the hopping parameter κ to a sensible
estimate of κ.

We will work with the γ5 hermitian partners of the above Dirac operators

Q = γ5D =

[

Q̃+ iµ −γ5ε

−γ5ε Q̃− iµ

]

=

[

Q+ −εγ5

−εγ5 Q−

]

, (3)

Q̃ = γ5

[

γ∇̃ −
a

2
∇∗∇ +

1

2κ
− 4

]

2κ ,

1



and recall that the above illustrated flavour structure does not interfere with possible
preconditionings, such as even-odd and mass shift. In fact, in eq. (3) we can still
distinguish the terms coupling matter fields at the same site, such as the mass terms,
from those acting on fields defined on different sites, such as Q̃.
The operator Q can be decomposed into four sub-matrices in the even-odd sites space:

Q =

[

Qee Qeo

Qoe Qoo

]

=

[

(γ5 + iµτ3 − εγ5τ1)ee Qeo

Qoe (γ5 + iµτ3 − εγ5τ1)oo

]

=

[

Qee 0
Qoe 1

] [

1 Q−1
ee Qeo

0 Q̂oo

]

.

Recalling that we are interested in the evaluation of the determinant, we can restrict on
the operator Q̂ defined only on half of the lattice, say the odd-to-odd sites. Inserting
also the flavour structure, we can rewrite the EO-preconditioned operator as

Q̂ ≡ Q̂oo = γ5





1 + iµγ5 −
Moe(1−iµγ5)Meo

1+µ2−ε2
−ε

(

1 + MoeMeo

1+µ2−ε2

)

−ε
(

1 + MoeMeo

1+µ2−ε2

)

1 − iµγ5 −
Moe(1+iµγ5)Meo

1+µ2−ε2



 , (4)

where the nearest neighbours sites are coupled by

(Meo(oe))x,y = κ
∑

µ

[

(1 + γµ) U †
µ(y) δy,x−µ̂ + (1 − γµ) Uµ(x) δy,x+µ̂

]

. (5)

In the following we will often refer to the hermitian operator

Ŝ = Q̂Q̂† (6)

2 Structure for JD

Since we are aiming at the (Chebyshev) polynomial approximation of the hermitian Ŝ

operator in eq. (6), we need to evaluate its lowest and largest eigenvalues 1.

The chosen algorithm is the Jacobi-Davidson (JD), which was already implemented
for the 1-flavour operator in eq. (1). The corresponding routine makes largely use of
ATLAS and LAPACK routines, and was adapted to handle structures called spinor,
which are defined over the ’volume plus boundary’ lattice points.

The implementation of the JD-routine to the 2-flavour case, involving the applica-
tion of the Dirac operator in eq. (6) to two spinors, is not straightforward since this
operation mixes the contribution of the two spinors, as evident from the (flavour space)
off-diagonal parts of eq. (4).
However, noting that the boundary are filled (and used) only when the Dirac operator
is applied (more rigorously, only when the nearest neghborough interaction in eq. (5) is
called), we create a copy of the existing JD-routine handling now a so called ’bispinor’

1Both eigenvalues λmin,max are needed for instance, for the determination of the approximation
interval [λmin/λmax, 1].
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structure Φ, a new object made out of two spinors (an upper part φup and a lower part
φdn), defined over the ’volume’ lattice points alone

Φ =

(

φup

φdn

)

.

Whenever the EO-preconditioned Dirac operator in eq. (4) is called

1. the volume site values of the bispinor are copied into two spinor arrays (ψ1, ψ2)

φup(x) → ψ1(x) , φdn(x) → ψ2(x)

2. the Dirac operator in eq. (4) is applied
(

ψ′
1

ψ′
2

)

= Q̂

(

ψ1

ψ2

)

,

filling and using the boundary whenever the interaction in eq. (5) is called,

3. the volume site values of the resulting two spinors are used to create the outcom-
ing bispinor

ψ′
1(x) → φ′

up(x) , ψ′
2(x) → φ′

dn(x) ⇒ Φ′ =

(

φ′
up

φ′
dn

)

.

Even if this (double copying) procedure involves a little waste of CPU-time (see below),
it appears to us as the safest and fastest way to implement the JD-routine. In fact,
besides adapting the JD for the new bispinor structure, it involves only the implemen-
tation of few linear algebra routines and (at least) one solver for the determination of
Φ = Ŝ−1η, given the source η.

3 Properties under mass sign transformation

Before discussing all the tests we performed, we should sketch for definitiveness many
important properties which will be use thought the next sections.

3.1 Parity of the operator

Denoting with Q̂(µ, ε) the Dirac operator in eq. (4) with given values of the mass
parameter, we note that

τ1Q̂(µ, ε)τ1 = Q̂(−µ, ε) (7)

τ3Q̂(µ, ε)τ3 = Q̂(µ,−ε) (8)

τ2Q̂(µ, ε)τ2 = Q̂(−µ,−ε)

Q̂(µ, ε) − Q̂(µ,−ε) = −2εγ5

(

0 A

A 0

)

, A =

[

1 +
MoeMeo

1 + µ2 ε2

]

(9)

Q̂†(µ, ε) = Q̂(−µ, ε) (10)

which, together with eq. (7) yields

τ1Q̂(µ, ε)τ1 = Q̂†(µ, ε) (11)
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3.2 Parity of the eigenvectors

As we aim at the eigenvalues computation of the hermitian operator Ŝ in eq. (6) by
means of the Jacobi-Davidson method, we will assume that a real eigenvalue λ and an
eigenvector |λ〉 exist:

〈λ| Ŝ(µ, ε) |λ〉 = 〈λ| Q̂(µ, ε)Q̂†(µ, ε) |λ〉 = λ

We are going to demonstrate that the many operators Ŝ(±µ,±ε) have the same spec-
trum of eigenvalues λ’s, with corresponding eigenvectors |λ〉’s related by τi-multiplications.

for instance, note that

defining |λ̃1〉 ≡ τ1 |λ〉 ⇒ Ŝ(−µ, ε) |λ̃1〉 = λ |λ̃1〉 (12)

since

〈λ̃| Ŝ(−µ, ε) |λ̃〉 = 〈λ| τ1Q̂(−µ, ε)Q̂†(−µ, ε)τ1 |λ〉 = 〈λ| Q̂(µ, ε)Q̂†(µ, ε) |λ〉 = λ

Analogous conclusions can be drawn for

|λ̃3〉 ≡ τ3 |λ〉 ⇒ Ŝ(µ,−ε) |λ̃3〉 = λ |λ̃3〉 (13)

|λ̃2〉 ≡ iτ2 |λ〉 ⇒ Ŝ(−µ,−ε) |λ̃2〉 = λ |λ̃2〉 (14)

4 Tests

In this section we will report the successful checks we have done in order to convince first
of all ourselves that the proposed method is correct. The tests concern the construction
of the non-degenerate operator and the computation of the eigenvalues, separately. We
will therefore divide the discussion into two subsections.

4.1 Operator

The following tests refers to the application of the non-degenerate 2-flavour EO-precond.
Dirac operator in eq. (4) on random fields (spinor or bispinor structure will be explicitly
declared), on either a thermalised or a random gauge configuration. The tests have
been performed on a hypercubic 44 lattice, using both a workstation (serial code) and
few processors of a PC cluster (parallel code).

1. Test against 1-flavour case: ε = 0
Setting ε = 0 , applying the non-degenerate operator Q̂ in eq. (4) on two random
spinors Xup, Xdn, produces the same two outputs (Yup and Ydn) as the application

of the 1-flavour Dirac operators Q̂+ on Xup and Q̂− on Xdn. We call Q̂+,− the
diagonal entries of the matrix in eq. (4), evaluated at ε = 0.

2. Test at µ = 0
Setting µ = 0 the application of Q̂ on two random spinors Xup, Xdn gives the

same results as the application of Q̂† on the same random spinor, independently
of the value of ε, see eq. (10).
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3. Testing the parity properties of the operator

• We have tested eq. (7) applying separately Q̂ on two random spinorsXup, Xdn

and Q̂ with opposite µ-mass term on Xdn, Xup (note the inverted dn, up or-
der). The spinors from the two applications, Yup, Ydn, have been shown to
be related by a tau1 multiplication.

• Moreover, we have also applied the operators Q̂ and Q̂† keeping the same
µ-mass value, showing that the resulting outcomes are related by a τ1 mul-
tiplication, as predicted by eq. (11) (the upper spinor of the first application
is identical to the lower spinor of the second application, and vice versa).

• Similarly as before, we tested eq. (8) applying separately Q̂ on two ran-
dom spinors Xup, Xdn and Q̂ with opposite ε-mass value on the two spinors
Xup,−Xdn. The resulting spinors Yup, Ydn of the two applications have been
show to be related by a τ3 multiplication.

• Finally, we tested the correct implementation of the non-degenerate Dirac
operator in eq. (4), verifying eq. (9). We have applied in fact separately the
operator Q̂ with positive and negative ε-mass value on two random spinors
Xup, Xdn and compared the results with the outcomes obtained applying the
operator in the r.h.s. of that equation.

4. Test for the hermitian Q̂Q̂† operator
Since our aim is the eigenvalue computation of Ŝ, we construct the routine which
applies in one shot the hermitian operator Q̂Q̂† to two random spinors Xup, Xdn.
We check the new routine comparing the two resulting spinors Yup, Ydn, with those

obtained applying Q̂† and Q̂ sequently.

5. Test for the bispinor structure
Finally, we focus on the possibility that the non-degenerate Dirac operator han-
dles only bispinors. However, since the application of eq. (4) mixes the single-
flavour contributions, due to a non-vanishing ε-mass value, our routine should
first split the values stored in one bispinor array into two spinor arrays. After
the application of Ŝ, the two outcoming spinor arrays are then composed into a
single bispinor array. Whenever possible, we performed the same tests as before.

For all the discussed cases, in addition to few single components (fixed site, spin and
colour indices), we compared also the norm and the norm difference.

4.2 Eigenvalue and Time Lost

Once we are confident that the (hermitian, EO-precond., 2-flavoured, non-degenerate)
operator Ŝ acting on one bispinor field is correctly implemented, we can use it as the
operator of which we wish to compute the eigenvalues and eigenvectors by mean of the
Jacobi-Davidson method.

In the following we summarise all the tests done by using both the serial code as well
as the parallelised code, for the eigenvalues, λ’s, and eigenvectors, |λ〉’s, computation
of Ŝ.
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1. Test for degeneracy at ε = 0
The first check aimed at a comparison between the λ’s computed for the 2-flavour
operator Ŝ in with respect to the those for its 1-flavour counterpart. Obviously,
the comparison is possible only if we set ε = 0. Running the two codes separately,
we found indeed the same lowest eigenvalues, as expected double degenerate for
the operator in eq. (6). This case is illustrated in the 2nd., 3rd. and 4th. column
of Tab. 1.

2. Test for κ = 0
The simplicity of this test consists in the fact that by setting κ = 0 the hopping
term in eq. (5) vanishes and the matrix in eq. (4) reduces to a diagonal one in
space and time indices. Moreover, imposing ε = 0, it also becomes diagonal

in flavour space, Ŝ =

(

1 + µ2 0
0 1 + µ2

)

. The resulting degenerate eigenvalue

will λ = 1 + µ2. The results are consistent with the explained predictions, as
illustrated in the 2nd. column of Tab. 1.

κ = 0 κ 6= 0
λ ε = 0, µ = 0.5 ε = 0, µ = 0.05 ε = 0, µ = 0.5 ε = µ = 0.5

1 1.250 7.445708096e-02 7.923313798e-01 2.917788497e-02
2 1.250 7.445708096e-02 7.923313798e-01 3.160717696e-02
3 1.250 7.910082938e-02 8.011715990e-01 4.298394254e-02
4 1.250 7.910082938e-02 8.011715990e-01 4.443633930e-02

Table 1: The columns illustrate the 4 lowest eigenvalues λ’s evaluated on a random
configuration using a lattice of 44 sites. The same test with similar results have been
performed on a thermalised configuration and on a larger lattice of 84 sites. The degen-
erate eigenvalue λ are not identical, since the illustrated numbers have been truncated,
but the difference lies on the 16th. digit.

3. Test for small ε
As was already mentioned, the ε-term plays the rôle of the mass-splitting. If
the value of ε is set to be small in comparison to µ, eq. (4) suggests that lowest
eigenvalues should be linear in ε for sufficiently small ε-mass values. We verify
this expectation numerically as it is evident from Tab. 2.

4. Test for λ-parity
The next test concern the behaviour of the λ once we reverse the sign of the mass
parameters. Following to Subsect. (3.2), we check that the operations µ → −µ
and ε→ −ε do not change the eigenvalues, λ’s.

5. Test for |λ〉-parity
As one of the most important check of the implemented JD-routine, we carefully
look at the behaviour of the eigenvectors |λ〉’s under sign reversal of the mass
parameters. Referring to eqs. (12-14), we checked that by applying the Dirac
operator Ŝ(−µ, ε) [ Ŝ(µ,−ε) ] to the eigenvectors |λ̃1〉 [ |λ̃3〉 ], we obtained the
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κ 6= 0 ; µ = 0.05
λ ε = 0 ε = 0.001 ε = 0.002 ε = 0.003

1 7.445708096e-02 7.391683060e-02 7.337144289e-02 7.282447271e-02
2 7.445708096e-02 7.498464266e-02 7.548073272e-02 7.589007216e-02
3 7.910082938e-02 7.859472224e-02 7.812636981e-02 7.775103000e-02
4 7.910082938e-02 7.962588307e-02 8.016225747e-02 8.070626799e-02

Table 2: The columns illustrate the 4 lowest eigenvalues λ’s evaluated on a random
configuration, with parameters κ and µ fixed. While at ε = 0 the double degeneracy
is evident (2.nd column), the increase of the ε-mass value is reflected into an almost
linear splitting of the two nearly degenerate λ’s from the original degenerate eigenvalue
(3rd. → 5th. columns).

same eigenvalue, λ. In addition, we checked that at the end of the eigenvalues
computation, the following relations were fulfilled

|λ〉 =

{

τ1 |λ̃1〉

τ3 |λ̃3〉

}

or

(

|λ̃1〉up

|λ̃1〉dn

)

=

(

|λ〉dn

|λ〉up

)

;

(

|λ̃3〉up

|λ̃3〉dn

)

=

(

|λ〉up

−|λ〉dn

)

These properties have been checked both on fixed (sites, spin, colour) components
as well as on the norm of the eigenvectors |λ〉’s.

6. The case of large µ
The behaviour of the lowest EW with increasing values of µ turns out to be not
simple as for the previous case. A possible explanation can be argued looking
at eq. (4), where among other places, the µ term enters non-trivially also as a
coefficient of the nearest neighbours interaction terms. Referring again to Tab. 1,
the 4th and the 5th. columns show the case of large µ and two possible extreme
values of the mass-splitting term: ε = 0 and ε = µ, respectively.

7. Test for time lost
This test should give us an estimate of the time ’lost’ by the code, while computing
the lowest λ, in the conversion from bispinor to two spinors and vice versa. The
percentage of time spent for this operation with respect to the total amount of
time needed for the S = QQ† application is illustrated in the first line of Tab. 3.
We should stress that this most interesting value remains acceptable small, even
if it varies with the lattice size and the kind of parallelisation from 1% to 7%.
However, we found that the larger the volume the stable, around 6%, the results.
Our conclusion inspecting the first line of Tab. 3 is that, with respect to the full
eigenvalues computation, the percentage of time lost by the code in the bispinor
↔ two spinors is definitively less than 10%.

In addition, in the second line of Tab. 3 we also provide the percentage of time
spent by the code in the subroutine that applies the Ŝ = Q̂Q̂† matrix to a
bispinor, with respect to the total time required for eigenvalues and eigenvectors
computation. The time spent in lineal algebra operations is reported in the third
line. Finally we also give the number of S applications needed to compute the
10 lowest eigenvalues.
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In all the cases illustrated in Tab. 3, we divided the lattice over 4 Processors,
considering hence different sub-lattices.
We do not report another table referring to the computed 4 highest λ’s, since the
program used still required high accuracy, while for our purpose of evaluating the
interval of the polynomial approximation, also a rough estimate of the maximal
eigenvalue will be sufficient (we guess that a 1% relative accuracy should be
sufficient).

µ = 0.5 1-Dim. parallelisation 2-Dim. parallelisation
ε = 0.0025 L = 4 L = 8 L = 12 L = 16 L = 8 L = 12 L = 16

bispinor ↔ spinors 0.3% 4.0% 2.5% 3.8% 2.5% 3.9% 3.1%
S Φ 47.9% 56% 53.5% 55.2% 69.5% 68.1% 67.9%

Lin. Alg. 51.8% 40% 44% 41% 28% 28% 29%

Nr. (SΦ) application 2340 3932 6001 7991 4279 5999 7671

Table 3: The illustrated outcomes refer to the computation of the 10 lowest eigenvalues,
keeping the mass parameters µ and ε fixed. The most interesting values in the first line
teaches us that the time overhead due to the bispinors ↔ two spinors remains acceptable
small. The values in the second line show the time consumption of the matrix-vector
computation, while time requested by linear algebra operations is illustrated in the third
line. Finally, the fourth line shows the number of S = QQ† applications.

5 New Files

As already anticipated, the bunch of tests has been performed both on one P4 work-
station as well as on 4 processors of the CILEA Xeon cluster. In the latter case, we
also checked the correct running choosing 1- and 2- dimensional parallelisation.
The implementation of the JD-routine for the bispinor structure can be called ’max-
imal’, in the sense that so far we have ’maximally’ implemented all the necessary
routines to work directly with bispinors. For our purposes, we implemented therefore
many linear algebra routines and two new solvers (bicgstab complex bi and cg her bi).
The conversion bispinors ↔ two spinors has been used uniquely (and unavoidably) in
the evaluation of the matrix-vector multiplication, by mean of a decompose-compose
process, and thus is the only place where the above discussed time loss occurs.

The whole bunch of new files carry names derived from the original (’spinor’ case)
ones, ending with the suffix ’ bi’, in order to signal that they refer to the code using
the bispinor structure.
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