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1. Introduction

The use of the Wilson flow as an accelerator for the HMC algorithm along the lines

of ref. [1] requires a reliable and reasonably fast program for the SU(3) exponential

function and its derivatives up to the second order. As already noted by Morningstar

and Peardon [2], the Cayley–Hamilton theorem allows such matrix functions to be

represented in an economical way.

In the present note, the representation is worked out in some detail, the emphasis

being on its regularity properties and suitability for numerical purposes. The SU(3)

notation used is summarized in appendix A.

2. The Cayley–Hamilton theorem

2.1 Characteristic equation

Let X be an arbitrary element of the Lie algebra su(3) of SU(3). Since X is traceless,

the characteristic polynomial

det(λ − X) = λ3 − 1
2 tr(X2)λ − detX (2.1)

depends on only two real parameters

t = − 1
2
tr(X2), d = idet X. (2.2)

Both t and d are polynomial invariants of X, i.e. they are invariant under the adjoint

action X → UXU−1 of U ∈ SU(3).
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The Cayley–Hamilton theorem asserts that the matrix X satisfies the character-

istic equation

X3 + tX + id = 0. (2.3)

For diagonalizable matrices like X, the statement is nearly trivial, because the eigen-

values of X are the roots of the characteristic polynomial.

2.2 Range of the invariant parameters

In the following, a detailed understanding of the relation between X ∈ su(3) and

the invariant parameters t and d will be helpful.

Lemma 2.1. The image of su(3) in the plane of the parameters (2.2) is the closed

region defined by the inequalities

t ≥ 0, d2 ≤ 4
27 t3. (2.4)

Proof: The eigenvalues ix1, ix2, ix3 of a given matrix X ∈ su(3) are purely imaginary

and may be ordered so that |x1| is greater or equal than the magnitude of the other

eigenvalues. Since X is traceless, there exists a real number r in the range 0 ≤ r ≤ 1

such that

x2 = −x1r, x3 = −x1(1 − r). (2.5)

The parameters (2.2) are then given by

t = x2
1{1 − r(1 − r)}, d = x3

1r(1 − r). (2.6)

In particular, t ≥ 0 and

d2 = t3
u2

(1 − u)3
, (2.7)

where u = r(1−r). The right-hand side of this equation is monotonically increasing

with u and therefore assumes its maximum at the endpoint u = 1
4 of the range of u.

For all X ∈ su(3), the parameters t and d thus satisfy the bounds (2.4).

It remains to be shown that each point (t, d) in the domain (2.4) is related to the

eigenvalues of a matrix X ∈ su(3) through eqs. (2.5) and (2.6). If d = 0 the choice

x1 =
√

t, x2 = −x1, x3 = 0, (2.8)
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Fig. 1. Image of the ball ‖X‖2 ≤ 1 in the plane of the invariant parameters (2.2).

satisfies all conditions. In all other cases, there is a unique value of u ∈ [0, 1
4 ] such

that eq. (2.7) holds. One may then set

x1 = sign(d)

√

t

1 − u
(2.9)

and define x2 and x3 through eq. (2.5), where r(1−r) = u. As can be easily verified,

this choice of x1, x2, x3 satisfies both (2.5) and (2.6).

With little additional work, one can show that t and d are in fact the only invari-

ants of X. A more complete statement is summarized by the following lemma.

Lemma 2.2. Up to permutations, the eigenvalues of X ∈ su(3) are uniquely deter-

mined by the invariants t and d. Moreover, X has degenerate eigenvalues if and only

if the point (t, d) is on the boundary of the domain (2.4).

Another useful result is

Lemma 2.3. The image in the (t, d)-plane of the subset of all X ∈ su(3) with norm

‖X‖2 ≤ M is the domain characterized by the bounds (2.4) and the inequality

|d| ≤ M(M2 − t). (2.10)

Proof: From eq. (2.6) one infers that t ≤ x2
1 and

|d| = |x1|(x2
1 − t). (2.11)
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The bound (2.10) follows from this equation and the fact that |x1| = ‖X‖2.

For illustration, the image of the ball ‖X‖2 ≤ 1 is shown in fig. 1. Whether a given

matrix X ∈ su(3) has norm less than or equal to some value M can, incidentally,

easily be checked by calculating t and d and by verifying that the bound (2.10) holds.

3. Matrix functions

3.1 Cayley–Hamilton representation

Let f(λ) be an arbitrary function that is defined and holomorphic in an open neigh-

bourhood of the imaginary axis Reλ = 0 in the complex plane. For any X ∈ su(3),

a 3 × 3 matrix f(X) may then be defined through

f(X) =

∮

dλ

2πi

f(λ)

λ − X
, (3.1)

where the integration contour encircles the spectral range of X (see fig. 2). Evidently,

f(X)v = f(ζ)v (3.2)

if v is an eigenvector of X with eigenvalue ζ, i.e. the definition (3.1) coincides with

the usual definition of functions of a diagonalizable matrix.

Using the characteristic equation (2.3), it is now straightforward to check that

(λ − X)−1 = (λ2 + t + λX + X2)(λ3 + tλ + id)−1. (3.3)

When inserted in eq. (3.1), this leads to the representation

f(X) = f0 + f1X + f2X
2 (3.4)

where

fk =

∮

dλ

2πi

ρk

λ3 + tλ + id
f(λ), {ρ0, ρ1, ρ2} = {λ2 + t, λ, 1}. (3.5)

Since the denominator in these integrals coincides with det(λ − X), the integration

contour avoids the poles of the integrand and the coefficients f0, f1, f2 are therefore
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Fig. 2. The contour integral (3.1) runs around a loop in the complex λ-plane which

tightly encloses the spectral range of X.

well-defined functions of t and d. Moreover, they extend to holomorphic functions

in a complex neighbourhood of the domain (2.4).

3.2 Alternative expressions for fk

The coefficients fk can be worked out in terms of the (purely imaginary) eigenvalues

λ1, λ2, λ3 of X. Noting

λ2 + t = 2
3
t + 1

3

∑

k<l

(λ − λk)(λ − λl), (3.6)

λ = 1
3

∑

k

(λ − λk), (3.7)

λ3 + tλ + id = (λ − λ1)(λ − λ2)(λ − λ3), (3.8)

the integrands in eq. (3.5) can be reduced to pole terms with up to 3 poles. Using

the residue theorem, the integration over λ then leads to fully explicit expressions

for f0, f1 and f2. These expressions are however not manifestly regular if some of

the eigenvalues coincide and are therefore of limited use.

When the Feynman parameter formula

1

r1r2 . . . rn
= Γ(n)

∫ 1

0

ds1 . . . dsn δ
(

1 −
∑

ksk

) 1

(
∑

kskrk)
n (3.9)
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is first applied, one instead obtains the expressions

f0 = 1
3

∑

k

f(λk) + 2
3 tf2, (3.10)

f1 = 1
3

∑

k<l

∫ 1

0

ds1 f ′(s1λk + (1 − s1)λl), (3.11)

f2 =

∫ 1

0

ds1

∫ 1−s1

0

ds2 f ′′(s1λ1 + s2λ2 + (1 − s1 − s2)λ3). (3.12)

The integrals in these formulae run over the spectral range of X and are manifestly

singularity-free for all X.

3.3 Uniqueness of the Cayley–Hamilton representation

The presence of the singularities alluded to above is related to a non-uniqueness of

the Cayley–Hamilton representation as stated by the following lemma.

Lemma 3.1. For a fixed matrix X ∈ su(3), the coefficients f0, f1, f2 are uniquely

determined through eq. (3.4) if and only if the eigenvalues of X are non-degenerate.

Proof: Equation (3.4) is equivalent to the Vandermonde system

f(λk) = f0 + f1λk + f2λ
2
k, k = 1, 2, 3, (3.13)

where, as above, λ1, λ2, λ3 denote the eigenvalues of X. Such systems are known to

have a unique solution if and only if the eigenvalues are pairwise different.

The coefficients given by eq. (3.5) are a particular choice of f0, f1, f2, which is distin-

guished by the fact that the coefficients are continuous (actually even differentiable)

functions of t and d. With this additional requirement, the Cayley–Hamilton repre-

sentation becomes unique.
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4. Derivatives of matrix functions

4.1 Differentiation of the Cayley–Hamilton representation

Matrix functions f(X) are functions of the coordinates X1, . . . ,X8 of X with values

in the space of complex 3 × 3 matrices (see appendix A). One is then interested in

the derivatives of f(X) with respect to the coordinates.

If the associated partial differential operators are denoted by ∂a, the differentiation

of the Cayley–Hamilton representation (3.4) leads to the expression

∂af(X) = ∂af0 + ∂af1X + ∂af2X
2

+ f1T
a + f2(T

aX + XT a). (4.1)

The second-order derivative is similarly given by

∂a∂bf(X) = ∂a∂bf0 + ∂a∂bf1X + ∂a∂bf2X
2

+ ∂af1T
b + ∂bf1T

a + ∂af2(T
bX + XT b) + ∂bf2(T

aX + XT a)

+ f2(T
aT b + T bT a). (4.2)

Since fk depends on X only through the invariant parameters t and d, the derivatives

of the coefficients in these equations can be expressed through

fk,t =
∂fk

∂t
, fk,d =

∂fk

∂d
, (4.3)

fk,tt =
∂2fk

∂t2
, fk,td =

∂2fk

∂t∂d
, fk,dd =

∂2fk

∂d2
. (4.4)

Explicitly, they are then given by

∂afk = 1
2Xafk,t + 1

2Y afk,d, (4.5)

∂a∂bfk = 1
2δabfk,t + 1

2dabcXcfk,d

+ 1
4XaXbfk,tt + 1

4 (XaY b + Y aXb)fk,td + 1
4Y aY bfk,dd, (4.6)

where Y a = 1
2dabcXbXc.
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4.2 Relations among the derivatives of fk

Starting from the representation (3.5), it is straightforward to show that

f0,t = −df2,d, (4.7)

f1,t = −if0,d + itf2,d, (4.8)

f2,t = −if1,d. (4.9)

Further differentiation then leads to the identities

f0,td = −f2,d − df2,dd, (4.10)

f1,td = −if0,dd + itf2,dd, (4.11)

f2,td = −if1,dd, (4.12)

f0,tt = idf1,dd, (4.13)

f1,tt = 2if2,d + tf1,dd + idf2,dd, (4.14)

f2,tt = −f0,dd + tf2,dd. (4.15)

On the right of eqs. (4.7)–(4.15), only the derivatives fk,d and fk,dd with respect to d

appear. Once these are computed, all other derivatives are thus given algebraically.

4.3 Alternative expression for fk,d and fk,dd

Similarly to fk, the derivatives of the coefficients can be represented through integrals

of the form

fk,d = 2
3δk0tf2,d − i

∫ 1

0

ds1ds2ds3 δ(1 − s1 − s2 − s3)

× ωk,d(s)f
(k+3)(s1λ1 + s2λ2 + s3λ3), (4.16)

fk,dd = 2
3δk0tf2,dd −

∫ 1

0

ds1ds2ds3 δ(1 − s1 − s2 − s3)

× ωk,dd(s)f
(k+6)(s1λ1 + s2λ2 + s3λ3), (4.17)
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where the weights ωk,d and ωk,dd are given by

ω0,d = 1
3 , (4.18)

ω1,d = 1
3 (s1s2 + s2s3 + s3s1), (4.19)

ω2,d = s1s2s3, (4.20)

ω0,dd = 1
3 (s1s2s

2
3 + s2s3s

2
1 + s3s1s

2
2), (4.21)

ω1,dd = 1
6 (s1s

2
2s

2
3 + s2s

2
3s

2
1 + s3s

2
1s

2
2), (4.22)

ω2,dd = 1
4s2

1s
2
2s

2
3. (4.23)

These expressions are free of any singularities, but the fact that the representations

(4.16),(4.17) involve high-order derivatives of the function f(λ) should not be over-

looked. Whether the differentiated Cayley–Hamilton representation is sutiable for

numerical evaluation therefore depends on the behaviour of these derivatives.

5. Application to the exponential function

In this section, the Cayley–Hamilton formalism is applied to the exponential function

f(λ) = eλ. Evidently, the associated matrix function f(X) coincides with the SU(3)

exponential function exp X in this case.

5.1 Numerical stability

Since the exponential function is unchanged when differentiated, and since its mag-

nitude is 1 along the imaginary axis, the coefficients fk and their derivatives are all

well-behaved. In particular, if, say,

‖X‖2 ≤ 1, (5.1)

there are no significant numerical cancellations in the Cayley–Hamilton representa-

tions (3.4),(4.1) and (4.2).

In the following, it will be taken for granted that the matrices X ∈ su(3) considered

satisfy the bound (5.1). An algorithmic strategy will then be developed that allows

the coefficients fk and their derivatives to be computed rapidly.
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5.2 Power series expansion

The matrix function associated to the polynomial

p(λ) =

N
∑

n=0

λn

n!
(5.2)

satisfies

‖ exp(X) − p(X)‖2 ≤ 1

(N + 1)!
(5.3)

and thus provides an accurate approximation to the exponential function already

for moderate values of the degree N .

Starting from eq. (2.3), the coefficients of the Cayley–Hamilton representation

p(X) = p0 + p1X + p2X
2 (5.4)

can be shown to be polynomials in the invariants t and d. Moreover, recalling the

“alternative expressions” (3.10)–(3.12) and noting that the derivatives

p(ν)(λ) =

N−ν
∑

n=0

λn

n!
(5.5)

approximate the exponential function, it follows that pk converges to fk when N is

taken to infinity. As a consequence, the coefficients fk can be computed numerically

by calculating pk for a sufficiently large value of N . In view of the results obtained

in sect. 4, the same applies to the derivatives of the coefficients.

5.3 Recursive computation of pk

The polynomial p(X) is best evaluated following the so-called Horner scheme (see

ref. [3], sect. 5.3, for example). This method generates a sequence qn(X) of polynom-

ials recursively according to

qN = cN , (5.6)

qn = Xqn+1 + cn, n = N − 1,N − 2, . . . , 0, (5.7)

where the coefficients cn are given by

cn =
1

n!
. (5.8)
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The last polynomial in the sequence, q0(X), then coincides with p(X).

Now if one passes to the Cayley–Hamilton representation

qn(X) = qn,0 + qn,1X + qn,2X
2, (5.9)

the recursion assumes the form

qN,0 = cN , qN,1 = qN,2 = 0, (5.10)

qn,0 = cn − idqn+1,2,

qn,1 = qn+1,0 − tqn+1,2,

qn,2 = qn+1,1, n = N − 1,N − 2, . . . , 0. (5.11)

Note that the coefficients qn,k are complex. Each step of the recursion thus requires 4

multiplications, 3 additions and a few register moves. Moreover, since the recursion

has depth 1, the coefficients do not need to be preserved except for the last calculated

ones.

5.4 Computation of pk,d and pk,dd

The recursions for the first derivative of the coefficients qn,k is

qN,0,d = qN,1,d = qN,2,d = 0, (5.12)

qn,0,d = −iqn+1,2 − idqn+1,2,d,

qn,1,d = qn+1,0,d − tqn+1,2,d,

qn,2,d = qn+1,1,d, n = N − 1,N − 2, . . . , 0. (5.13)

In these equations, the solution of the recursion (5.11) appears as an inhomogeneous

contribution. The computation thus requires both recursions (5.11) and (5.13) to

be solved simultaneously. At and of the loop, the calculation then yields the desired

coefficients pk = q0,k and pk,d = q0,k,d.

The same comments apply to the recursion

qN,0,dd = qN,1,dd = qN,2,dd = 0, (5.14)

qn,0,dd = −2iqn+1,2,d − idqn+1,2,dd,
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qn,1,dd = qn+1,0,dd − tqn+1,2,dd,

qn,2,dd = qn+1,1,dd, n = N − 1,N − 2, . . . , 0, (5.15)

which calculates the second derivative pk,dd = q0,k,dd of the coefficients pk. In total

the computation then requires only 14 multiplications and 11 additions per iteration.

5.5 Choice of the degree N

In order to obtain the coefficients pk with the least possible inaccuracy, the degree of

the polynomial should be such that the second derivative p′′(λ) approximates eλ to

machine precision. If an ISO C compiler and double-precision arithmetic are used,

this condition will be met if N is set to the smallest integer such that

1

(N − 1)!
≤ DBL EPSILON (5.16)

(DBL EPSILON is defined in the standard include file float.h).

Since the “alternative expressions” for the derivatives pk,d and pk,dd involve the

derivatives of p(λ) up to the 8th order, N must satisfy the more stringent bound

1

(N − 7)!
≤ DBL EPSILON (5.17)

if also these coefficients are to be obtained to the highest possible precision.

Appendix A

A.1 Group generators

The Lie algebra su(3) of SU(3) may be identified with the space of all anti-hermitian

traceless 3 × 3 matrices. With respect to a basis T a, a = 1, . . . , 8, of such matrices,

the elements X ∈ su(3) are given by

X = XaT a, (A.1)

where (X1, . . . ,X8) ∈ R
8 (repeated group indices are automatically summed over).

The generators T a are assumed to satisfy the normalization condition

tr{T aT b} = − 1
2δab. (A.2)
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The structure of the Lie algebra is then encoded in the commutators

[T a, T b] = fabcT c, (A.3)

while the completeness of the generators implies

{T a, T b} = − 1
3
δab + idabcT c, (A.4)

T a
αβT a

γδ = − 1
2

{

δαδδβγ − 1
3δαβδγδ

}

. (A.5)

It follows from these equations that the structure constants fabc and the tensor dabc

are both real. Moreover, fabc is totally anti-symmetric in the indices and dabc totally

symmetric and traceless.

A.2 Matrix norms

The natural scalar product in su(3) is

(X,Y ) = XaY a = −2 tr{XY }. (A.6)

In particular, ‖X‖ = (X,X)1/2 is a possible definition of the norm of X ∈ su(3).

Another useful matrix norm derives from the square norm

‖v‖2 = {|v1|2 + |v2|2 + |v3|2}1/2 (A.7)

of complex colour vectors v. If A is any complex 3 × 3 matrix, one defines

‖A‖2 = max
‖v‖2=1

‖Av‖2. (A.8)

This norm satisfies

‖A + B‖2 ≤ ‖A‖2 + ‖B‖2, ‖AB‖2 ≤ ‖A‖2‖B‖2, (A.9)

for all matrices A,B. Moreover, if A is hermitian or antihermitian, ‖A‖2 is equal to

the maximum of the absolute values of its eigenvalues.
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