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Even if a final self-consistent (independent on external softwares) code is still not
achieved, in this note I would like to report the status of the PHMC algorithm, de-
scribing the way to run the program and the meaning of the related files. Furthermore,
I present some tests within the various sections and finally I discuss a ToDo List.

For my purpose, I will take profit of previous notes. Those people who followed
the work will recognise several repetitions, needed however to discuss in a possibly
satisfactory way some new topics or developments.

1 Setup and Formulæ: still another introduction

Studying many non-perturbative QCD properties, we can consider two quark pairs, a
light (l) mass degenerate one (u and d flavours) and a heavier (h) mass non-degenerate
one (s and c flavour). We will adopt the tmLQCD formulation for our Monte Carlo
simulations, whose action is

S = SG[U ] + ψ̄l Dl[U ] ψl + ψ̄h Dh[U ] ψh , ψl = [u, d] , ψh = [s, c] , (1)

where SG is a suitable pure gauge action.
While for the light sector an Hmc algorithm has been shown to work very well, we
will mainly concentrate on an algorithm for the heavy quarks sector and its possible
coupling to the existing Hmc.

Let me remind briefly the formulæ for the non-degenerate Dirac operator, suitable
for describing the effects of the strange and charm quarks, (s, c).

Dh =
[

γ∇̃ +Wcr

]

2κcr + iµ̄γ5τ3 + ε̄τ1 (2)

Wcr = −a
2
∇∗∇ +Mcr , Mcr =

1

2κcr
− 4 . (3)

In eq. (2), a chiral rotation and a scaling of the quark fields and the mass term by
2κcr have been performed. The scalar terms, µ̄ and ε̄ are the twisted mass and the
mass splitting terms, respectively; note further that the Pauli matrices operate only in
flavour space.
Resembling all together for later purposes, in lattice spacing units:

S = SG[U ] + ψ̄h,x

[

δx,y (1 + iγ5µ̄τ3 + ε̄τ1) − κ

±4
∑

µ=±1

δx,y+µ(1 + γµ)Uy,µ

]

ψh,y (4)
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Properties as O(a)-improvement are obtained in tmLQCD at maximal twist, which
can be achieved by setting the hopping parameter κ to a sensible estimate of κcr.
For convenience we work with the γ5 hermitian partner of the above Dirac operator

Q = γ5Dh =

[

Q̃+ iµ̄ γ5ε̄

γ5ε̄ Q̃− iµ̄

]

=

[

Q+ εγ5

εγ5 Q−

]

, (5)

Q̃ = γ5

[

γ∇̃ − a

2
∇∗∇ +

1

2κ
− 4

]

2κ .

.
In a path integral framework, the Gaussian integration over the Grassman variables

yields the determinant of the Dirac operator, not altered by the above γ5 multiplication.
Finally, we will stochastically evaluate the determinant of the Dirac operator in the
heavy quark mass sector on a 2-spinors object Φh, as:

det[Q] ⇔
∫

DΦh e
−Φ†

h(QQ†)−1/2Φh '
∫

DΦh e
−Φ†

hP (QQ†)Φh , Φh =

(

φup

φdn

)

. (6)

2 Intervals and Polynomials

Since in eq. (6) the Dirac operator, QQ†, is a two-flavour non-degenerate matrix, we
cannot rely on the usual Hmc. Therefore we are forced to adopt a polynomial approx-
imation:

P = Pn,ε(S) =
1√
S

[1 +Rn,ε(S)] , S = QQ†, (7)

where, in contrast to the previous notes [1] and [2], starting from eq. (5) I suppressed
EO-preconditioning indices (hats), for simplicity.
In eq. (7) the polynomial is implicitly intended as optimised to approximate the func-
tion in the normalised interval [ε, 1], where the lower extrema is determined as in
eq. (15). The degree, n, has been determined iteratively as described in the following.

The polynomial approximations, eqs. (7) and (12), are based on Chebyshev polyno-
mials and are constructed following the Clenshaw recursion relations. This procedure
allows to get roundoff under control as well as to employ truncated polynomials from
pre-calculated Nmax Chebyshev coefficients, dj.
Instead of the criterion explained in [4], the polynomial degree is determined by an
iterative process until a stringent stopping criterion, involving only the sum of the un-
used coefficients, is fulfilled.
Comparing to the criterion discussed in [4], the achieved precisions goes as 1

Nmax
∑

j=n+1

|dj| ∼ δ ,
||(PSP − 1)rh||2

||2rh||2
∼ δ2 , rh = random 2-spinors . (8)

Additionally, we also check that the second formula in eq. (8) evaluated on the real
number ε, the most critical point in the approximation interval, is of the same order of

1The behaviour is expected to be valid for relatively large lattice extent. On small lattices, toy
models, the criterion turns out to be even more severe.
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magnitude as δ.
The accuracy parameter δ is now handled as an input parameter called acc−Pfirst,
with default value 10−2.

The polynomial in eq. (7) is playing a crucial rôle, since it enters also the Molecular
Dynamic. To this aim, we will adopt the product representation in terms of its complex
roots zj:

Pn,ε(S)Φh =

[

n
∏

j=1

cj(S − zj)

]

Φh = B(S)B(S)† Φh , (9)

B(S) Φh =
√
cn(Qτ1 − rn) · ... · √c1(Qτ1 − r1) Φh , r∗k = r2n+1−k , (10)

where it was already assumed that the polynomial degree is even 2, such as to express
the product over the n complex conjugate zj as running over 2n appropriately ordered
square roots of roots rj =

√
zj, see [7]. This is possible thanks to the hermiticity prop-

erties of Qτ1 (not Q itself). It was also proved that the coefficients cj remain constant
in the whole approximation interval, are independent on the roots and equal to each
other, hence they can be merged together into a unique Cn =

∏

ci.
Following [7], we adopt a Bit-Reversal ordering of the roots zj to get roundoff under
control in eq. (10).

In the notes [1] and [3] it was already pointed out the possibility to handle a second
polynomial approximation, in the determination of both the pseudofermion as well
as the final Hamiltonian. It has been shown that the analytically correctness of the
algorithm depends exactly on this second polynomial.
Even if the determination of the pseudofermion is not unique, in [3] it was claimed that
a suitable solution is given by

Φh = P̃ B† Q rh , rh = random 2-spinors (11)

P̃ = P̃ñ,ε̃(S) =
1

Pn,ε(S)
√
S

[

1 + R̃ñ,ε̃(S)
]

, (12)

correctly distributed and such as to approximate the exponent in eq. (6), through 3

∣

∣

∣

∣

(

P̃ B† Q
)−1

Φh

∣

∣

∣

∣

2

= Φ†
h

(

1 + R̃ñ,ε̃

)−1

Pn,ε(S)
(

1 + R̃ñ,ε̃

)−1

Φh. (13)

Similarly to eq. (8), we construct this second polynomial approximation out of a pre-
calculated Nmax Chebyshev coefficients d̃j, determining iteratively the degree ñ once
the following stopping criterion is fulfilled:

Nmax
∑

j=n+1

|d̃j| ∼ δ̃ ,
||(P̃PSP P̃ − 1)rh||2

||2rh||2
∼ δ̃2 , rh = random 2-spinors . (14)

2Note moreover that an even degree forbids the zeros of the polynomial to sit on the real axis inside
the approximation interval.

3Maybe superfluous: note however that Q does not commute neither with Q† nor with P . Since
P, P̃ , B, B† are linear combination of S, they obviously commute with each other.
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Again, the accuracy parameter δ̃ is treated as an input parameter, acc−Ptilde, with
default value 10−4.
As already mentioned and discussed in the note [3], P̃ is unavoidable in order to render
the algorithm correct, entering both the computation of the final Hamiltonian as well
as the computation of the reweighting correction.

With this property in mind, two different approximation intervals can be consid-
ered: a conservatively safe and fixed one ([ε̃, 1]), and a variable one ([ε, 1]), with the
implicit convention that ε̃ ≤ ε.
The determination of the conservative ε̃ has been performed by evaluating smallest and
largest eigenvalues (λcons and Λcons) 4 on a uniformly distributed random gauge con-
figuration (by which I mean a gauge configuration U = eiαaωa with ωa flat randomly
distributed in the group interval [0, 2π]), checking that the corresponding new files
start.c/h-NEW are copied to start.c/h. Empirically, it has been proved on a moder-
ately small lattice, 83 × 16, that the eigenvalues (λj and Λj) evaluated on successively
updated configurations (j) fulfils the expected condition: λj > λcons and Λj < Λcons.
This characteristic is expecting to be preserved for even larger lattices while it is hardly
valid for toy models, since the larger the volume the higher the probability to find dif-
ferent eigenvalues.
We therefore define

λ̃ = λcons , Λ̃ = Λcons , ε̃ =
λ̃

Λ̃
, S → Snorm = S

1

Λ̃
(15)

Note moreover that the computationally time consuming evaluation of the conservative
eigenvalues can be avoided if the, so far only empirically proved, following relations are
fulfilled

λcons ∝ 2 (µ̄2 − ε̄2) , Λcons ∝ 1

2
√

µ̄2 + ε̄2
. (16)

The proportionality is intended as a tentative values for the conservative eigenvalues:
the constant value 2 can be for instance increased by another 10÷ 20 %. Obviously, in
order to really gain CPU-time, these values should not yield a too pessimistic approx-
imation interval 5. Since this point surely requires some experience, I think it is more
reliable the full λ̃ , Λ̃ computation.
Recall in fact that the eigenvalues have to be evaluated only once at the beginning of
the thermalisation; moreover, for moderately or large lattices, one could also rely the
eigenvalue computation on a single uniformly distributed random gauge configuration,
while for small lattices an average over several eigenvalues must be considered.

Once a conservative interval has been determined, together with a high degree poly-
nomial P̃ , we are free to choose a less accurate polynomial P in a smaller interval [ε, 1].
The advantage consists in performing the very time demanding Molecular Dynamics
with a polynomial relatively low degree.

4To this aim we implemented the Jacobi-Davidson procedure for a bispinor structure. See note [2]
for descriptions, discussions and tests.

5Due to the formula for ε̃, for fixed δ̃ the polynomial degree ñ is rapidly increasing, requiring
therefore a safe estimate for the proportionality factor.
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Inspecting the eqs. (20) and (21), an analytically exact algorithm requires to fix the
two intervals and degrees, ε̃, ε and ñ, n.
However, one could invest some time at the very beginning (while thermalising) in
order to find the best setup for the polynomial P , adjusting ε and n. Once this opti-
mal setup has been found, the code should be used first to thermalise to the correctly
distributed configuration (expected to be quite fast) and finally for production.
Aiming at the best setup, a new input parameter recev has been introduced, deciding
after how many trajectories the eigenvalues λ and Λ have to be recomputed. Conse-
quently, a new polynomial P together with the necessary new roots have to be newly
determined.
The value of recev is possibly to be chosen from empirical experience, since the men-
tioned evaluation of P and related roots can be rather time consuming, especially if
external softwares are employed.

Due to the roots problems discussed in the next section, the lines in the code in-
volving recev have been commented. Additionally its default value is set to be 10+5

(and must be set to ∞ in the production runs).

3 Root evaluation

This is exactly the point where the code is still affected by some troubles.
I developed a routine computing the roots taking profit of the implemented library
CLN 6, but so far, unsuccessfully.
The basic algorithm follows the Laguerre method [6] for polynomial roots computations,
adapted to polynomials constructed via Clenshaw recursion relations. Additionally, I
have incorporated the real coefficients properties in the deflation process.
The Laguerre method is considered safe for what concern convergence to the desired
solution and, at least in my case, it also turn to be very fast in the computation of
the first root z1 (I. Montvay, using a standard representation as in eq. (32), claims it
is very fast for all the roots they are looking for).
Since the roots comes in conjugate pairs, I developed a double deflation procedure to
produce another real coefficients polynomial, Q, of degree n′ = n− 2

Qn′,ε(s) =
Pn,ε(s)

(s− z1)(s− z2)
=

Pn,ε(s)

(s− z1)(s− z?
1)

, s ∈ C

The polynomial Q is constructed out of coefficients bk determined as follows

Pn,ε(s) = (s− z1)(s− z?
1) Qn′,ε(s)

Pn,ε(s) = (s2 − 2As+D) Qn′,ε(s) , A = <(z1) , D = |z1|2

1

2
d0T0 +

n
∑

j=1

djTj = (s2 − 2As+D)

[

1

2
b0T0 +

n′=n−2
∑

k=1

bkTk

]

, (17)

6CLN = Class Library for Numbers handles number classes with extended large precision. It
requires to use the g++ C++ compiler.
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where Tk are the k-degree Chebyshev polynomials. By means of the recursions

Tk+1 = 2s Tk − Tk−1 ⇒ s Tk =
1

2
(Tk+1 + Tk−1)

the real coefficients bk can be found iteratively comparing term by term the coefficients
of the Tk on the left- and right- hand side of eq. (17), obtaining

bn′ = bn−2 = 4 · dn (18)

bn′−1 = bn−3 = 4 · [dn−1 + A · bn−2]

bn′−2 = bn−4 = 4 ·
[

dn−2 + A · bn−3 −
(

D +
1

2

)

· bn−2

]

bn′−3 = bn−5 = 4 ·
[

dn−3 + A · (bn−4 + bn−2) −
(

D +
1

2

)

· bn−3

]

bn′−4 = bn−6 = 4 ·
[

dn−4 + A · (bn−5 + bn−3) −
(

D +
1

2

)

· bn−4

]

− bn−2

... = ...

bn′=0 = bn−(n−2) = 4 ·
[

dn−(n−2) + A ·
(

bn−(n−3) + bn−(n−1)

)

−
(

D +
1

2

)

· bn−(n−2)

]

− bn−(n−4)

These coefficients however undergoes two problems:

1. two additional equations did not match with the complete list above

(

D +
3

4

)

· bn′=1 − A · bn′=0 = d1 −
1

4
bn′=3 + A · bn′=2

1

2

(

D +
1

2

)

· bn′=0 − A · bn′=1 =
1

2
d0 −

1

4
bn′=2

2. the properties characterising the dj, see for instance eq. (5.8.7) in [5], seems to
be not preserved. Inspecting for instance eq. (18) for bn−2, there is a discrepancy
between the derived coefficient, i), and the one as if it would be computed exactly,
ii),

i) 4 · 2

n+ 1

n+1
∑

k=1

f

[

cos

(

π(k − 1
2
)

n+ 1

)]

cos

(

πn(k − 1
2
)

n+ 1

)

ii)
2

n− 1

n−1
∑

k=1

f

[

cos

(

π(k − 1
2
)

n− 1

)]

cos

(

π(n− 2)(k − 1
2
)

n− 1

)

The file where the above equations has been coded is called roots−clenshaw.c/h.

For these unsolved problems we rely so far on an external Mathematica notebook,
which computes the polynomial roots by a nested damped Newton’s, secant and Brent’s
method. Beside being very slow, it is based moreover on the naive Chebyshev approx-
imation (linear combination of Chebyshev polynomials, no Clenshaw): roundoff errors
are controlled by working symbolically (means with very high precision).
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As a cross effect, I discover a difference between the two polynomial representations
for P in eqs. (7) and (9). Evaluating the scalar product between two 2-spinors, η
and η′ = Pη, we expect the scalar product to be a real number, since P is a linear
combination of the hermitian operator S.
This is the case when we choose η as a random 2-spinors rh, while the relation is not
satisfied when we consider η as derived from a mixed application of B and P̃

〈η, P η〉 =

(

2.7870571922 · 10+03 − 2.3980817332 · 10−14 i

2.8499859650 · 10+03 + 1.6264767311 · 10−14 i

)

, η = rh

〈η, P η〉 =

(

9.0779290403 · 10+04 + 7.3660649446 · 10+01 i

9.0964902205 · 10+04 − 7.3660649446 · 10+01 i

)

, η = P̃ B† Qrh = Φh

4 Updates

The update has been implemented with the purpose to couple the Hmc contributions to
the Phmc contributions. Therefore, a new file called hybrid−nondegenerate.c/h has
been created containing the main routines evaluating the forces for the non-degenerate
case, shortly the Phmc contribution.
The correct sequence of roots used in the force evaluation has been tested as well as
the normalisation factors, as described in the note [4]. Finally, the mentioned forces
are coupled to the Hmc contributions simply calling already existing routines.
I should remark however that since the Phmc forces computation involves a further
multiplication by the overall constant C, it is very important in the leap−frog−ND

routine to respect the order of the fermion−momenta and fermion−momenta−ND calls.

Let me remind again that so far the coupling between Phmc and Hmc forces con-
tributions is not automatised, but it is imposed by hand. It would probably be wiser
to insert a flag to decide whether to consider this coupling (Nf = 2 + 1 + 1 flavours)
or to apply the Phmc alone (Nf = 1 + 1).
Furthermore, I have implemented only one integration scheme, namely the Leap-Frog
scheme, adapted for the non-degenerate case. In view of a possible merging of the
Phmc with the latest developments in the Hmc, others integrations schemes for non-
degenerate quark masses have possibly to be coded.

5 Final Hamiltonian

Once an updated configuration has been obtained, the program performs a Metropolis
Accept/Reject test. As explained in [3], in shorthand notation,

Hstart =

∣

∣

∣

∣

(

P̃B†Q
)−1 ∣

∣

∣

Ustart

Φh

∣

∣

∣

∣

2

= r
†
hrh (19)

Hend =

∣

∣

∣

∣

(

P̃B†Q
)−1 ∣

∣

∣

Uend

Φh

∣

∣

∣

∣

2

= Φ†
hBB

† χh (20)
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where

χh =
(

1 + R̃
)−2

Φh =
(

P̃PSP P̃
)−1

Φh =
(

1 − A + A2 − ...
)

Φh , A = P̃PSP P̃ − 1 . (21)

While the starting Hamiltonian is straightforward, the final Hamiltonian in eq. (20) is
very dependent on the magnitude of R̃, hence on the accuracy acc−Ptilde.
The algorithm would be exact if we could calculate the whole series in eq. (21). In
practise however, it can be argued that only few terms contributes significantly.
Thus we adopt a further accuracy parameter, δH , to stop the series when

|H(n) −H (n−1)| < δH , H(0) = Φ†
hBB

†Φh , (22)

while H (n) involves n applications of A.
The evaluation of eq. (20) turns to be very demanding, indeed. However, taking profit
of the hermiticity of the polynomials, we can calculate each contribution involving an
application of A at almost half of the time, relying on the following sequence

ϕ(0) = B†Φh : H(0) =
∣

∣

∣
ϕ(0)

∣

∣

∣

2

ϕ(1) = Q†PP̃ϕ(0) : H(1) = H(0) +H(0) −
∣

∣

∣
ϕ(1)

∣

∣

∣

2

= 2H (0) −
∣

∣

∣
ϕ(1)

∣

∣

∣

2

ϕ(2) = P̃PQϕ(1) : H(2) = H(1) +H(0) − 2H (1) +
∣

∣

∣
ϕ(2)

∣

∣

∣
= H(0) −H (1) +

∣

∣

∣
ϕ(2)

∣

∣

∣

2

...........

ϕ(n) =

{

Q†PP̃ , odd-n

P̃PQ , even-n

}

ϕ(n−1) : H(n) = H(n−1) +
n−1
∑

j=0

(

n

j

)

H(j) + (−1)n
∣

∣

∣
ϕ(n)

∣

∣

∣

2

Let me remark that the accuracy parameter δH has yet not been handled as an
input parameter, but set, until now, to be equal to δ̃, since the algorithm precision is
governed by acc−Ptilde.

Moreover, the introduced roots problems reflects itself also in the behaviour of the
corrections to the final Hamiltonian.
The following table illustrates the corrections on toys model, volume = 44 and fixed
algorithm accuracy δ̃. We set ε = ε̃.

ε̃ δ n δ̃ ñ | H (1) −H (0) | | H(2) −H (1) | | H(3) −H (2) |
0.0043 10−1 30 10−5 73 3.352193 · 10−5 1.340765 · 10−4 3.016974 · 10−4

0.0043 10−2 48 10−5 70 2.746273 · 10−5 1.098600 · 10−4 2.471645 · 10−4

0.028 10−2 20 10−5 27 3.567308 · 10−2 1.424006 · 10−1 3.210541 · 10−1

0.028 10−5 36 10−5 36 1.834568 · 10−2 7.325222 · 10−2 1.651101 · 10−1

0.028 10−9 62 10−9 62 1.398236 · 10−3 5.591353 · 10−3 1.258412 · 10−2

0.028 10−5 36 10−9 52 6.437184 · 10−4 2.574702 · 10−3 5.793465 · 10−3

0.028 10−2 20 10−9 54 1.083810 · 10−3 4.334610 · 10−3 9.754292 · 10−3

From these results it seems that the following conclusions can be drawn
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1. there is a strong dependency on the approximation interval: the smaller ε̃ the
smaller the first correction;

2. the dependency on the accuracy parameter δ̃ is appreciable;

3. the dependency on the accuracy parameter δ appears to be almost negligible;

4. large n involves much more apparent problems related to the root computation
(notice the anomaly of the 5th row);

It is reasonable to expect that the higher the correction the more rounding errors can
affect the calculations.
What is not convincing however is that this happens so fast, already by quite large
energy differences 7.

6 Reweighting

Even if this part has yet not been coded, let me recall the first reweighting correction
as mentioned in eq. (14) of note [3]. Due to the polynomial approximation, there is a
discrepancy between the gauge configuration distributions we will achieve, Code, and
the target one, Aim, namely

Code : det
[(

1 + R̃
)

P−1
(

1 + R̃
)]

, Aim : det
[√

S
]

The correction factor Wh[U ], compensating for this discrepancy, will then be given by

Wh[U ] = det

[√
SP

(

1 + R̃
)−2

]

= det

[√
SP

(

1 + R̃
)−1

]

det

[

(

1 + R̃
)−1

]

Wh[U ] = W
(1)
h [U ] ·W (2)

h [U ] = det
[

P̃−1
]

det

[

(

1 + R̃
)−1

]

,

where I implicitly assumed that the operators S, P and P̃ are evaluated on the last
accepted configuration. If the correction due to Wh turns out to be so small to be
effectively neglected, one can choose to evaluate the reweighting each 10 → 100 con-
figurations only as a test.
For the precision of P̃ we are planning to achieve, we claim that eventually only the
first term, W

(1)
h , will contribute. In this case the reweighting factor will consist only

on the stochastic evaluation of

W
(1)
h [U ] = det[P̃−1] '

∫

Dη1 e
−η†

1
η1 exp

[

η
†
1

(

1 − P̃
)

η1

]

(23)

To this purpose, we only have to produce another polynomial

P̄ = 1 − P̃

7I have honestly to admit that when these corrections were coded, similar tests turned out to be
much more satisfactory. Unfortunately I lost the corresponding files.
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to be applied to a large (O(20 ÷ 50) ?) number of random pseudofermions, η1.
The last equation should not scared since this third polynomial is straightforwardly
constructed out of the d̃j coefficients, just replacing d̄0 = 2 − d̃0 and d̄i = −d̃i , i 6= 0,
as straightforward referring at the expression of P̃ in eq. (17).
Following this procedure one continues getting again rounding error under control.
Note moreover that eq. (23) can be evaluated off-line, namely externally on the running
code.

7 Notation

In order to run a performance test between the Phmc code developed by the Hamburg
(HH) group and our code, one should notice the different notation.
Let me therefore repeat the formulæ for the action, at least in the heavy sector, given
by the HH-group as in eqs. (8), (9), and (6) of [8]:

SHH = SG[U ] + χ̄x

[

δx,y (µk + iγ5τ1aµσ + τ3aµδ) −
1

2

±4
∑

µ=±1

δx,y+µ(1 + γµ)Uy,µ

]

χy , (24)

where the scalar term µk is related to the critical mass, while µσ and µδ are propor-
tional to the input mass parameter µ̄ and ε̄ respectively.
Contrary as in eqs. (2), (3) and (4), the matter fields in eq. (24) are not scaled. Fur-
thermore, the HH matter fields, χ, are related through a pure flavour transformation,
something like a projection, to our matter fields, ψ.
All in one:

ψh =
1√
2

(1 − iτ2)
1√
2κ

χ , ψ̄h =
1√
2κ

χ̄
1√
2

(1 + iτ2) , (25)

Thus, the scalar terms in eqs. (24) and (4) are related as follow:

µk = 2κ aMcr , µ̄ = 2κ µσ , ε̄ = 2κ µδ . (26)

As far as the pure run is concerned, we have only to convert the input mass param-
eters, µ̄ and ε̄, as described in eq. (26).

Obviously it would be nice to unify the notation, choosing the best one would how-
ever require some discussion.

8 Tests

In this section, I will report about the results comparison between the our code and
the HH-group’s one.
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On a 16 × 83 lattice, The HH-group used its code with the following inputs:

β = 3.30 , C1 = −0.08333333 , κ = 0.170

µl
σ = 0.01 , µl

δ = 0.0 , µh
σ = 0.325 , µh

δ = 0.275 ,

where the mass superscripts l, h distinguish the light from the heavy quark masses.
With respect to eq. (24), we concentrate only on µh

σ and µh
δ .

The results the HH-group obtained are

Plaq = 0.4831 ± 0.0002 , τint = 19.679 , σ = 0.002437 ,

where the ”naive” variance σ has been calculated assuming that the configuration after
every trajectory is statistically independent. The calculated autocorrelations starts at
2000, while the trajectories used for calculating autocorrelations are 5601 = Nmeas.
The reported error has been calculated from

Error = σ ·
√

2τint

Nmeas
(27)

For a comparison, we follow eq. (26) to set the mass parameters, thermalise for
around 2000 trajectories Once we calculate the mass parameters as in eq. (26), we
start the runs mainly on parallel architectures. Discarding the first 1104 trajectories
for supposed thermalisation, we use Nmeas = 5500 and a JackKnife method to obtain

Plaq = 0.4838 ± 0.00016 (28)

which is not consistent with the HH-result.
Note however that the above results have been obtained using ”wrong” roots, namely
while Mathematica is evaluated exactly n Chebyshev coefficients, the C-code is han-
dling n out ofNmax, leading therefore to a slightly (but sufficiently) different polynomial
construction.
On a chronologically later stage it has been proved the above statement, showing that
the founded roots are not roots for the polynomial constructed as in our C-code.

The motivation of using a truncated polynomial is mainly due to have a direct
control over the polynomial approximation. In fact, a high (2000) polynomial degree
using 2000 coefficients approximates, say, perfectly the argument function. As shown
in eq. (8), keeping only n out of Nmax coefficients guarantees the desired level of accu-
racy.
Not the same (or at least not that simply) can be inferred by evaluating and using
exactly only n coefficients.
Nevertheless, since we are interested in a rather modest accurate polynomial approxi-
mation for P , we can even lower the approximation confidence by imposing to evaluate
only n coefficients (means Nmax = n).
By this method, the Mathematica and C-code coefficients are the same, as will be
shown later, and the corresponding roots are correct.

11



We therefore repeat a similar comparison on a smaller lattice, 44, with the same
parameters. The HH-outcomes are

Plaq = 0.5339 ± 0.0002 , τint = 1.276 , σ = 0.01030 ,

measured over a total of 7731 trajectories.
Our results, discarding again 2000 trajectories are

Plaq = 0.5305 ± 0.0004 (29)

Only for completeness, I report also the analysis of the data obtained by using
different coefficients (see discussion above for the 16 × 83 lattice)

Plaq = 0.5320 ± 0.0005 (30)

The correctness of the above method (coherent Mathematica vs. C-code coefficient
calculation) reflect itself also in

∆H =

{

0.00026 ± 0.0003
0.3937 ± 0.0005

}

⇒ exp(−∆H) =

{

1.000235± 0.000342
0.6753 ± 0.0003

}

,(31)

where the (second) first line refers to a (un-)coherent evaluation of Chebyshev coeffi-
cients.

9 ToDo List

In this section, I will present some checks of possible implementation. The discussion
is mostly related to the possibilities to overcome the roots-problem, insisting on eval-
uating the Chebyshev coefficients dj differently in Mathematica or in the C-code.
It sounds a little bit anachronistically as compared to the results presented in the pre-
vious section, but the outcomes in Sect. (8) have been obtained in the latest days of
my work.
Therefore, one could probably skip the following paragraphs as non-interesting. Never-
theless I think they can furnish some insight of the problems encountered by insisting
on using non-consistently Mathematica and the C-code.
Additionally, the following checks could yield some idea for further implementations of
the code.
Finally, I should apologise for having discussed the subjects in a rather fuzzy way, not
following a precise criterion.

9.1 Parallel dimensionality

So far I was able to run the code only on a 1- and 2- parallel dimensions setup. Carsten
suggests to look for possible dimension-n division anywhere in the new files.

12



9.2 CLN

Beside the file roots−clenshaw.c/h containing the code for the Laguerre method and
double deflation procedure, possibly suitable for polynomials with real coefficients, the
CLN library can be useful in the construction of the standard representation:

P = a0 + a1 · x+ a2 · x2 + ...+ an−1x
n−1 + an · xn . (32)

The evaluation of the coefficients ai from a polynomial expressed in the Chebyshev
basis, as given in the first equation of (17), will require in fact an extended calculation
accuracy.
In the following I will give you my formulæ for these coefficients even if a CLN routine
is yet not ready.

In order to give you the possibility to crosscheck my formulæ for these coefficients,
let me remind the construction of P à la Clenshaw, starting with the Chebyshev co-
efficients, dk. Restricting the attention to a real argument, x, for simplicity, one first
has to change variable, x → y, in order to fit the [−1, 1] approximation interval, and
then iterate the following

x ∈ [ε, 1] x→ y = Ax−B =
2

1 − ε
x− 1 + ε

1 − ε
y ∈ [−1, 1]

vn+2 = 0 , vn+1 = 0

vj = 2A x vj+1 − 2B vj+1 − vj+2 + dj , j = n− 1, n− 2, ..., 1

P ≡ 2A x v1 − 2B v1 − v2 +
1

2
d0 , (33)

assuming the polynomial degree being n.

Following this procedure for few examples (n = 4, 6, 8, 10), I was able to extrapolate
analytically the following formulæ for the coefficients a0

a0 =
1

2
d0 +

n/2
∑

j=1

(−1)j
d2j + B

{

n
∑

i=1

[

(2B)i−1
jmax
∑

j=1

(−1)j+i−1
d2j+i−2 · s(i)

j

]}

jmax ≡ INT

(

n− i + 1

2

)

; s
(i)
j=0 = 0 ∀i = 1, ..., n

s
(i=1)
j = (2j − 1) ; s

(i=2)
j = s

(i=2)
j−1 + s

(i=1)
j ; ... ; s

(i=n)
j = s

(i=n)
j−1 + s

(i=n−1)
j ,

while for the remaining ak

ak = 2k−1Ak

n−k+1
∑

i=1

[

l
(k)
i (2B)i−1

jmax
∑

j=1

(−1)j+1
dk+2j−3+1 · s(k+i−1)

j

]

jmax ≡ INT

(

n− k + 3 − i

2

)

l
(k=1)
i = 1 ; l

(k=2)
i = l

(k=2)
i−1 + l

(k=1)
i ; ... ; l

(k=n)
i = l

(k=n)
i−1 + l

(k=n−1)
i ,
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The numerical difficulties involved in the computation of the coefficients ak causes
the simple C-program to crash. My experience shows that the main (or only first ?)

problem concerns with the evaluation of the overall coefficients s
(i)
j and l

(k)
i , due to

roundoff as well as machine precision. Expecting n to be of order 50, it is easy that
such coefficients did not fit the double or long double structures allowed by C.

To be done: It would therefore be suitable to convert the C file (which I gave
the misleading name clenshaw−coef.c/h, sorry) into a CLN one, and then adopt the
(HH) well tested Laguerre method.

9.3 Mathematica

As referred at the end of Sect. (3), it seems to arise a difference between the polynomial
in the Chebyshev-, eq. (7), and in the monomial basis, eq. (9).
There are many possible parts where this problem could arise, since chronologically

1. compute Nmax = 2000 Chebyshev coefficients, dj and construct P using n coeffi-
cients out of them, by means of Clenshaw recursion relation, see eq. (33);

2. giving to Mathematica the degree n and the approximation interval [ε, 1], let it
compute exactly the n coefficients and then the roots zk of the polynomial applied
to real variable. Order the roots in Bit-Reversal mode;

3. write the roots rk and the matching overall constant C = (
∏

i ci)
1/n as in eq. (10)

into a file (relying on a finite accuracy, say values with 24 digits);

4. let these values be read by the C-code and perform the many multiplications
involving the polynomial in non-trivial structure (2-spinors), as discussed in [4].

Since the discussed troubles did not seem to emerge within the Mathematica note-
book, I start checking the values of the coefficients dj as evaluated in Mathematica and
the C-program, choosing n = 48 and ε = 0.0025. The results are presented in the fol-
lowing table, where I denoted by C-exact the calculation of exactly 0 → 48 coefficients
by the C-code, while Trunc stands for the calculation of the first 0 → 48 coefficients
out of 2000.

k Math C-exact Trunc C Trunc Math

0 5.58200914260652 5.58200914260654 5.58206453293626 5.58206453293624
1 -3.04473013842613 -3.04473013842614 -3.04478583614984 -3.04478583614983
... ... ... ... ...
19 -0.16354383654914 -0.16354383654914 -0.16375361893866 -0.16375361893866
20 0.14450811986551 0.14450811986551 0.14474062315254 0.14474062315253
... ... ... ... ...
47 -0.00231417824140 -0.00231417824137 -0.00650832665357 -0.00650832665357
48 0.00114977193761 0.00114977193761 0.00582954388001 0.00582954388001
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The evident almost equality between the Math and the C-exact coefficients reflects
itself in a negligible difference between the two polynomial representations of P , as
calculated by Mathematica on real variables 8.
On the contrary, it is interesting to look at the second table illustrating the differences
and the variances between the different ways to determine the coefficients dj. The 3th

Math vs. Trunc C Variance: Math vs. C
k Difference Variance Exact Trunc

0 0.00005539032974 0.00000992300950 0.0 · 10−14 0.0 · 10−14

1 0.00005569772371 0.0000182931561 0.0 · 10−14 0.0 · 10−14

... ... ... ... ...
19 0.00020978238952 0.00128272880191 3.0 · 10−14 0.0 · 10−14

20 0.00023250328703 0.00160892887709 1.0 · 10−14 2.0 · 10−14

... ... ... ... ...
47 0.00419414841217 1.81237051543798 982 · 10−14 40 · 10−14

48 0.00467977194240 4.07017408348795 473 · 10−14 42 · 10−14

and 4th columns have been reported just to show the (same) order of magnitude between
the Math and the C methods, both for exact as well as for truncated coefficients. Let
me recall that the table shows the difference and variances between the coefficients.
Even reminding that higher coefficients, say dj>30 are expect to contribute much less
than the first ones, say dj<10, I strongly believe that the 1st and 2nd columns of the
table reflects an existing problem.
However it is yet not proved how these sometimes large discrepancies effects the hole
computations of P in the two representations 9.
The following two possible ways to overcome the problem turned out to fail:

• Read in Mathematica the coefficients as produced by the C-program (the Trunc
C columns). Fails since Mathematica is expecting to handle a much higher
accuracy.

• Produce with Mathematica itself n coefficients out of 2000. Fails, more correctly
it runs eternally, probably for the same low-accuracy reasons.

To be done: Search for some more tests checking for the correctness of my hy-
pothesis above. However, my wish would be to turn to CLN and have a (fast !)
self-containing code.

Before going on, it should be mentioned that the Mathematica notebook evaluates
the overall constant C as

C̄ =
P (s̄)

∏n
j=1(s̄− zj)

, P (s̄) =
1

2
d0T0(s̄) +

n
∑

j=1

djTj(s̄) , dj ∈ Math

⇒ C = C̄1/n , (34)

8I do not expect that applications on 2-spinors will change this behaviour.
9I think that in principle, discrepancies cancellations can happen during the multiplication, due to

the alternating sign of the coefficients.
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where the polynomial, P , is evaluated exactly on few chosen real point, s̄, in the ap-
proximation interval. Believing these points, this overall constant turns out to remain
constant in the approximation interval.
However this is not the definition of the constant we really need.

For our purposes, we should replace in eq. (34) the exact polynomial evaluation
with the widely used Clenshaw recursion relations, together with the corresponding
truncated dj. In this way however, we enter the discussed problems concerning the
discrepancy between the dj’s, see previous table.

Insisting on working with Mathematica, inserting Clenshaw recursions and trun-
cated coefficients, it happens that the claimed overall constant did not remain constant
within the approximation interval, as illustrated in the following table. The correspond-

n = 8 n = 18 n = 48

P vs. BB† P vs. BB† (P vs. BB†) · 10−2

s̄ C8 | Diff. | Var. % C18 | Diff. | Var. % C48 | Diff. | Var. %

ε 2.9561 2.02350 16.18 3.1544 0.48712 3.32 3.33944350 0.6592 4.325
0.336 2.8234 0.29820 21.03 3.1434 0.04925 2.93 3.33940988 0.0088 0.508
0.5 2.9394 0.19799 12.30 3.1439 0.03669 2.66 3.33943271 0.0392 2.773

0.734 2.8154 0.21562 23.80 3.1509 0.01629 1.38 3.33939139 0.0369 3.165
1.0 2.9533 0.19084 15.56 3.1547 0.03685 3.53 3.33944545 0.0461 4.604

s̄ = 0.5 C = 2.8916 C = 3.1484 C = 3.33941341

ing reference value as evaluated using eq. (34) for the 2 settings are reported in the
last row.
It should be remarked that the last three columns (n = 48 case) contains values calcu-
lated with less precision: in order to evaluate the Clenshaw recursions I have reduced
the (truncated) Chebyshev coefficients, dj, to a precision of 36 digits.
On the contrary, the values in the other columns refer to a toy models, with polynomial
degree n = 8, 18 and have been evaluated using the full Mathematica precision.
Insisting on using this external software, the same analysis for an appropriate degree,
say n = 48, needs ages to run till the end. On one hand this is due to the computation
of the Nmax = 2000 coefficients, from which the code takes only the first n; on the
other hand, the Clenshaw loop discussed in eq. (33) seems to progressively slow down,
until it stacks 10.

To be done: One should therefore take care of:
- check whether the discrepancy between the overall constants as evaluated in the two
prescribed model persists also for larger degrees;
- check whether the last, correct, C remains really constant in the approximation in-
terval, i.e: varying s̄;
- since it enters n multiplication in the Molecular Dynamics, write the constant C with
large precision to a file, normierungLocal.dat;
- similarly, write the roots rj with large number of digits in a separate file

10The determination of BB† as the determinant of a diagonal n × n matrix is not requiring a too
long time.
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Square−root−BR−roots.dat.

The root ordering has been proved to be correctly done by checking the oscillation
(Min, Max, Ratio) during the product discussed in eq. (9)

Min(l) = min
s∈[ε,1]

|P l(s)| , Max(l) = max
s∈[ε,1]

|P l(s)| , Ratio(l) =
Max(l)

Min(l)

P l(s) = P l
n,ε(s) =

l
∏

j=1

(s− zj) , l ∈ {1, ..., n}

The following table clearly shows the validity of the adopted Bit-Reversal Ordering,
as discussed in [7]. The last row has been chosen as the case where the Ratio become
maximal.

Unordered Bit Reversal for zi Bit Reversal for ri

l Max Min Ratio Max Min Ratio Max Min Ratio

1 0.949 0.232 4.089 0.938 0.224 4.193 3.502 0.184 19.077
2 1.591 0.063 25.27 2.609 0.010 248.17 6.942 0.060 115.17
... ... ... ... ... ... ... ... ... ...
22 1416.3 0.0013 1092932.3 2.58 0.257 10.06 1.061 0.038 27.86
23 2421.5 0.0009 2630314.7 5.87 0.295 19.91 1.922 0.129 14.93
... ... ... ... ... ... ... ... ... ...
47 10.61 0.301 35.27 25.63 0.292 87.9 2.659 0.578 4.600
48 1.002 0.997 1.00 1.002 0.997 1.011 0.999 0.316 3.160
... ... ... ... ... ... ... ... ... ...
67 39.66 0.199 199.56
68 117.7 0.263 448.1

Worst 4157.3 0.0005 7977251.4 2.609 0.010 248.17 114.65 0.247 464.7

Even if everything seems to be correctly implemented, recall that it has been checked
working with real values. Nevertheless, I hardly think that non-trivial structures as
2-spinors will change these outcomes.

To be done: Repeat a similar analysis for the application of S to 2-spinors Φh.

9.4 Hermiticity

Related to the previous two subsections, it is plausible to expect that also the prob-
lems concerning the scalar product, as at the end of Sect. (3), and the behaviour of
the corrections to the final Hamiltonian, as discussed at the end of Sect. (5), will be
solved once the roots computation is well tested.

To be done: It would be however interesting to monitor the behaviour of the
final Hamiltonian corrections by choosing ε 6= ε̃. Probably more exhaustive tests on
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the dependence on the various parameters can be performed.

9.5 Merging

This point should probably be implemented only once everything else is correctly run-
ning.
However it would be interesting to test whether the use of other inverter algorithm
needed by the Jacoby-Davidson procedure can accelerate the eigenvalues evaluation. So
far only the bicgstab−complex−bi.c/h has been modified in order to handle bispinor
structures, when the serial code calls the routine jdher−bi.c/h. Analogously, the
parallel code pjdher−bi.c/h can only take profit of cg−her−bi.c/h.
Beside the eigenvalues calculation, there is a lack on variety also of integration scheme:
as already mentioned, I only implemented the leap−frog−ND as a routine in the file
hybrid−nondegenerate.c/h.

10 Involved files

The files characterising the Phmc code are mainly derived from similar Hmc-files and
usually carry similar names. To distinguish and/or to find the Phmc properties, a
comment (IF PHMC ... END PHMC) has been inserted whenever new characterising
lines have been added.

• phmc−tm.c

The input parameters are read; the memory for the so-called bispinor structures,
needed for the eigenvalues λ and Λ computation is allocated.
Depending on the starting condition (hot, cold, continue, restart), the code com-
putes new eigenvalues on a uniformly distributed random gauge configuration
and write them into a file or it reads from a file. This is called INOUT.data

and contains λ̃, Λ̃ and ε̃; moreover, more unnecessary informations are stored in
EVS.data.
Once the intervals are determined, the code calls chebyshev−polynomial−nd.c/h
evaluating the Chebyshev coefficients, dk, and polynomial degree, n, for P ; thus
the same for the construction of P̃ calling Ptilde−nd.c/h.
Known n, the code dynamically allocates the memory for the χ spinors to be
used in the Molecular Dynamic (see [4]); so far (due to external Mathematica
notebook) the 2n roots rj and the overall coefficient C needed to match the two
polynomial representations of P , see eq. (9) are read and not computed.
Finally the measurement loop is started, calling the update routine update−tm−nd.c/h.
Let me recall that the re-computation of the interval [ε, 1], of the polynomial P
and its roots each rec−ev measurements is still commented.

• update−tm−nd.c/h

After defining the pseudofermion 2-spinors as in eq. (11), the code calls for the
routine evolving the configuration and evaluating the final Hamiltonian (say with-
out corrections). Finally it performs a Metropolis Accept/Reject step.
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Even here, the coupling of the contributions between the light (Hmc) and heavy
(Phmc) sector is done by hand, by simply summing the energies.

• hybrid−nondegenerate−update.c/h

This is the routine where the Phmc forces are evaluated and the new configuration
candidate is determined. Again: in order to discard the Hmc contributions to
the Phmc part has been done by hand.

Additionally, there are few more files for the implicitly mentioned routines:

• init−bispinor−field.c/h, init−chi−spinor−field.c/h and init−chi−copy.c/h

allocate memory for bispinors and the up/down spinors, respectively;

• start.c/h-NEW containing the additional routine for the uniformly distributed
random gauge configuration. Remember to copy these files into start.c/h;

• in the directory solver you can find few filename−bi.c/h needed for the eigen-
values computation using the bispinor structure;

• analogously, in the directory linalg you can find few filename−bi.c/h created
initially for some test on the non-degenerate operator or used when computing
the eigenvalues.

Finally, due to the still not finished code, there are similar copies of some files,
like phmc−tm.c/h-extension or update−tm−nd.c/h-extension containing just some
testing code. They work with the usual header file.
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