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1. Introduction

The gauge actions supported in the openQCD package include the Wilson plaquette

action, the tree-level Symanzik-improved action and other closely related actions.

In this note, the actions and the boundary conditions for the gauge field are defined

and the computation of the associated molecular-dynamics forces is briefly discussed.

The notation and the normalization conventions are the same as in refs. [1,2,6].

2. Definition

Let S0 and S1 be the sets of oriented plaquette and double-plaquette loops on the

lattice (see fig. 1). The supported gauge actions are of the form

SG =
1

g20

1
∑

k=0

ck
∑

C∈Sk

wk(C) tr{1− U(C)}, (2.1)

where U(C) denotes the ordered product of the link variables around the loop C.

The weight factor wk(C) depends on the choice of boundary conditions and differs

from unity only near the boundaries of the lattice (see sect. 3).

In order to ensure the correct normalization of the bare coupling g0, the coefficients

ck must be such that

c0 + 8c1 = 1. (2.2)
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Fig. 1. Plaquette and planar double-plaquette loops in a (µ, ν)–plane of the lattice.

The sums in eq. (2.1) run over all these loops, where loops differing by their orientation

are considered to be different.

Moreover, the constraint c0 > 0 is imposed as otherwise there may be fields with

lowest action which are not locally pure gauge configurations [3].

In the case of the Wilson plaquette action,

c0 = 1, c1 = 0, (2.3)

while the tree-level Symanzik improved action is obtained by setting [4]

c0 = 5

3
, c1 = − 1

12
. (2.4)

Another choice of the coefficients,

c0 = 3.648, c1 = −0.331, (2.5)

was proposed by Iwasaki on the basis of a renormalization-group analysis of the pure

gauge theory [5]. In the openQCD main programs, the coefficient c0 is an adjustable

parameter so that one is free to choose any one of these popular actions.

3. Boundary conditions

The openQCD programs support various types of boundary conditions in the time

direction. In the spatial directions, periodic boundary conditions are imposed as

usual. Independently of the boundary conditions, the lattice always includes the

points x with Cartesian coordinates

x = (x0, x1, x2, x3) = a(n0, n1, n2, n3),

nµ ∈ Z, 0 ≤ nµ < Nµ, (3.1)

2



where a denotes the lattice spacing and the lattice sizes Nµ ≥ 4, µ = 0, . . . , 3, are

even integers. Another time-slice of points is added to the lattice at time x0 = aN0

in the case of Schrödinger functional (SF) and open-SF boundary conditions.

The active link variables are those integrated over in the QCD functional integral.

In general, there are further link variables, the static ones, on which the gauge action

depends but which are set to some fixed values.

3.1 Open boundary conditions

There are no static link variables in this case and the active link variables reside on

the links, where both endpoints are contained in the lattice (3.1) (modulo spatial

translations by multiples of the lattice sizes aN1, aN2, aN3). The sum in eq. (2.1)

then extends over all loops C that are fully contained in the lattice, i.e. which pass

through only such links.

With open boundary conditions, the lattice has two boundaries, one at time 0 and

the other at time T = a(N0 − 1). The weight factors wk(C) in eq. (2.1) are equal to

1 except for the space-like loops C at these times, where

wk(C) =
1

2
cG. (3.2)

As previously discussed in ref. [1], the coefficient cG is required for O(a) improvement

of correlation functions involving local fields close to or at the boundaries of the

lattice. In particular, setting cG = 1 ensures on-shell improvement at tree-level of

perturbation theory.

3.2 SF boundary conditions

As already mentioned, the lattice includes an additional time-slice at time x0 = aN0

when SF boundary conditions are chosen. The time extent T of the lattice is thus

T = aN0 in this case, but the spatial link variables on the boundaries at time 0 and

T are static and taken to be of the form [6]

U(x, k) =

{

exp{aCk} if x0 = 0,

exp{aC ′
k} if x0 = T ,

(3.3)

Ck =
i

aNk





φ1 0 0

0 φ2 0

0 0 φ3



 , C ′
k =

i

aNk





φ′
1 0 0

0 φ′
2 0

0 0 φ′
3



 , (3.4)
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Fig. 2. At the boundaries of the lattice where SF boundary conditions are imposed,

the double-plaquette loops C that cross the boundary are included in the gauge action

(2.1), with weight w1(C) = 1/2 and U(C) set to the product of the link variables

around the loop shown on the right, which winds twice around the inner plaquette.

for k = 1, 2, 3. Subject to the constraints

3
∑

j=1

φj =

3
∑

j=1

φ′
j = 0, (3.5)

the angles φj and φ′
j can be chosen arbitrarily.

With SF boundary conditions, the active link variables reside on the links that

have both endpoints in the time range 0 ≤ x0 ≤ T , at most one of them being at

time 0 or T . For the form of the gauge action near the boundaries of the lattice, two

choices, referred to as A and B, were proposed by Aoki, Frezzotti and Weisz [7]. In

the openQCD programs, another possible choice of the action is implemented, which

combines the advantages of choice A and B (see appendix A for further explanations).

The sets of loops C summed over in the gauge action eq. (2.1) includes all loops

that are fully contained in the range 0 ≤ x0 ≤ T of time. In addition, the time-like

double-plaquette loops that cross the boundaries of the lattice as shown in fig. 2 are

included in the sum, the associated Wilson loops U(C) being given by the square of

the plaquette loops on the inner side of the boundary.

In view of the boundary conditions (3.3),(3.4), the space-like loops at time 0 and

T do not contribute to the gauge action and their weights wk(C) can therefore be

left unspecified. For the plaquette loops, the weights are then

w0(C) =

{

cG if C has exactly one link on a boundary,

1 otherwise,
(3.6)

while for the planar double-plaquette loops they are given by

w1(C) =

{

1

2
if C crosses a boundary as in fig. 2,

1 otherwise.
(3.7)
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Tree-level O(a)-improvement is then again guaranteed if cG = 1, but at higher orders

of perturbation theory O(a)-improvement probably requires the coefficient cG to be

different from the one required for improvement of the theory with open boundary

conditions.

3.3 Open-SF boundary conditions

The openQCD programs also support open boundary conditions at time 0 together

with SF boundary conditions at time T = aN0. Lattices with these boundary

conditions have the same size as the lattices with SF boundary conditions at both

time 0 and T . The only static link variables are

U(x, k)|x0=T = exp{aC ′
k}, C ′

k =
i

aNk





φ′
1 0 0

0 φ′
2 0

0 0 φ′
3



 , (3.8)

in this case, while all link variables at time 0 are active.

When open-SF boundary conditions are chosen, the weights wk(C) are given by

eq. (3.2) for loops in the vicinity of the boundary at x0 = 0 and by eqs. (3.6),(3.7),

with cG replaced by c′
G
, for loops near x0 = T . In the bulk of the lattice, all weights

are set to 1 as usual. The adjustable parameters describing open-SF boundary

conditions are thus the angles φ′
j and the improvement coefficients cG and c′

G
.

3.4 Periodic boundary conditions

In this case, the lattice coincides with the set (3.1) of points. Since the points at

time x0 = a(N0 − 1) are considered to be neighbours of the points at x0 = 0, the

time extent T of the lattice is aN0. With these boundary conditions, the lattice has

no boundaries, all link variables are active and the weights wk(C) are all equal to 1.

3.5 Remarks

Except for open boundary conditions, where T = a(N0−1), the time extent T of the

lattice is always equal to aN0. Open boundary conditions are special in this respect

for purely technical reasons related to the chosen data structures and parallelization

strategies.

In practice, lattices with open boundary conditions are of interest for studies of

the theory on large lattices. A difference in the time extent of the lattice by plus or

minus one lattice spacing is quite irrelevant in this case. Having T = aN0 is however

an advantage for step-scaling, using SF or open-SF boundary conditions, since the

multiplication of the lattice sizes Nµ by a common scale factor then preserves the
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Fig. 3. In total, there are ten oriented plaquette and planar double-plaquette loops

that pass through all corners of a given plaquette. The computation of the force (4.1)

along the edges of the plaquette deriving from these loops can be simplified by first

calculating the staples shown in this figure and saving them in a temporary array (fat

links on the right).

ratios of the physical lattice sizes T and aNk exactly and not only up to terms of

order a.

The boundary conditions imposed on the quark fields depend on the ones chosen

for the gauge field. They are described in all detail in the notes doc/dirac.pdf. The

boundary conditions and the associated action parameters to be used in a simulation

must be specified in the input parameter files (see doc/parms.pdf).

4. Computation of the gauge force

There are probably many good ways to calculate the force field

F a(x, µ) = ∂a
x,µSG. (4.1)

The method described in the following proceeds from one plaquette to the next and

accumulates the contributions to the force components at the edges of the plaquette

which derive from the loops that pass through all corners of the plaquette (see fig. 3).

By reversing the orientation of a given loop C one obtains a different loop C′. The

contribution to the gauge action of such a pair of loops is

s(C) =
2

g20
ckwk(C)Re tr{1− U(C)}, (4.2)
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where k = 0 or 1 depending on whether C is a plaquette or double-plaquette loop.

Now if C passes through the link (x, µ) from x + aµ̂ to x, the dependence of the

action (3.2) on the link variable U(x, µ) is made explicit by

s(C) = −
2

g20
ckwk(C)Re tr{U(x, µ)V (x, µ; C)}+ constant, (4.3)

V (x, µ; C) being the product of the other link variables on the loop. Similarly, if the

loop passes through the link in the opposite direction, the action may be written in

the form

s(C) = −
2

g20
ckwk(C)Re tr{V (x, µ; C)U(x, µ)−1}+ constant. (4.4)

The contribution f(x, µ) of these terms to the total force F (x, µ) = F (x, µ)aT a is

f(x, µ) = +
1

g20
ckwk(C)P{U(C)}, (4.5)

f(x, µ) = −
1

g20
ckwk(C)P{U(C)}, (4.6)

respectively, where U(C) is the product of the link variables around C starting and

ending at x, while

P{M} = 1

2
(M −M†)− 1

6
tr(M −M†) (4.7)

projects any 3× 3 matrix M to the Lie algebra of SU(3).

The computation of the force field may thus proceed in the following steps:

(1) Run through all unoriented plaquettes of the lattice. At a given plaquette, choose

one of the two possible orientations.

(2) Consider the plaquette and double-plaquette loops that pass through all corners

of the current plaquette and that have the chosen orientation. Compute the staples

(fat links) shown in fig. 3.

(3) Compute the plaquette loops plotted in fig. 4 and add or subtract the associated

force contribution to the force field according to eqs. (4.5),(4.6).

In step (3), the number of SU(3) multiplications can be significantly reduced by

factoring common products.
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Fig. 4. Products U(C) of link variables that contribute to the force field at the edges

of the current plaquette. The dot indicates which edge is concerned and also coincides

with the point x in eqs. (4.5),(4.6). The contributions from the loops on the first row

must be multiplied by ±g−2

0
c0w0(C) and those from all other loops by ±g−2

0
c1w1(C).

5. Communication requirements

In the openQCD simulation programs, the local lattices (the parts of the full lattice

on which a given MPI process operates) do not contain all the link variables required

for the computations described in the previous section.

A double-counting of plaquettes can be avoided by locally running through all

(x, µ, ν)–plaquettes, where x is in the local lattice and µ, ν = 0, . . . , 3, µ < ν. The

link variables on the edges of these plaquettes, which are not part of the local gauge

field, must then first be copied from the neighbouring processes (see fig. 5). After

that it is still not possible to compute all staples locally, but the missing ones can be

calculated on the neighbouring lattices and be communicated to the local process
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Fig. 5. Plaquettes in a two-dimensional plane of a 64 local lattice. The plaquettes

that are fully contained in the local lattice are those in the grey square. Half of the link

variables on the edges of the other plaquettes must be fetched from the neighbouring

MPI processes. The staples (fat links) at the exterior boundary of the set of plaquettes

shown in the figure must be copied from the neighbouring lattices too.

(fat links in fig. 5). It is advantageous to store the copied staples in a buffer before

the calculation of the force starts.

Appendix A

When SF boundary conditions are imposed, there is no obviously preferred form of

the gauge action near the boundaries of the lattice. The choices A and B proposed

in ref. [7] were guided by the requirements of simplicity, O(a)-improvement and ease

of use in perturbation theory. For reasons to become clear below, choice A or choice

B were recommended depending on whether the boundary values Ck and C ′
k vanish

or not.

The action defined in subsect. 3.2 includes the required O(a) boundary counter-

terms and has a number of attractive features:

(1) Classical O(a)-improvement is guaranteed if cG = 1.
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(2) The classical background field

U(x, µ) = exp{aBµ(x)},

B0(x) = 0, Bk(x) = {(T − x0)Ck + x0C
′
k}/T, (A.1)

is an exact solution of the lattice field equations that are obtained from the action

with cG = 1 by varying the active link variables.

(3) To leading order of perturbation theory, and if Ck = C ′
k = 0, the action assumes

a simple diagonal form in the natural momentum-space representation

A0(x) =
2

TL3

∑

p

′

cos(p0x0 +
1

2
p0)e

ipxÃ0(p), (A.2)

Ak(x) =
2i

TL3

∑

p

′
sin(p0x0)e

ipx+ i

2
pkÃk(p), Ãk(p)

∣

∣

∣

p0=0
= 0, (A.3)

p0 ∈
{πn

T

∣

∣

∣ n = 0, 1, . . . , T − 1
}

, pk ∈
{2πn

L

∣

∣

∣ n = 0, 1, . . . , L− 1
}

, (A.4)

of the gauge potential. For simplicity, the lattice spacing was set to unity in these

equations and the three lattice sizes Nk = L were taken to be the same. The primed

momentum sums run over all values of the four-momentum p = (p0,p), the terms at

p0 = 0 being counted with weight 1/2. A somewhat lengthy calculation then shows

that the action

SG =
1

TL3

∑

p

′ ∑

µ,ν

Ãµ(p)
∗∆µν(p)Ãν(p) + O(g0), (A.5)

∆µν(p) = δµν p̂
2 − p̂µp̂ν − c1

{

δµν
[

p̂4 + 1

2
p̂2

(

p̂2µ + p̂2ν
)]

− p̂3µp̂ν − p̂µp̂
3
ν

}

, (A.6)

p̂µ = 2 sin(pµ/2), p̂2 =
∑

µ

p̂2µ, p̂4 =
∑

µ

p̂4µ, (A.7)

is indeed diagonal in Fourier space.

The actions A and B considered in ref. [7] both have property (1), but property

(2) is shared only by B and property (3) only by A. For studies of the Schrödinger

functional with non-zero boundary values, choice B therefore became the preferred

one.

10



References
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