
Parameters of the openQCD main programs
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1. Introduction

The openQCD main programs have many adjustable parameters. Most parameter

values are passed to the programs at run time through a human-readable parameter

file. The only parameters that must be specified at compilation time are the lattice

sizes and the MPI process grid (see include/global.h and main/README.global).

Each program also has a few command-line options.

Some of the parameters are of a fairly trivial kind and are omitted in this note (see,

instead, the README files that come with each program). Details about the simulation

algorithm and the exact normalization conventions employed can be found in the

documentation files in the doc directory.

2. Preliminaries

The input parameter files are divided into sections such as

[Solver 3]

solver CGNE

nmx 256

res 1.0e-10

In this case, the section describes the solver number 3 for the Dirac equation. The

solver program is CGNE, the conjugate-gradient (CG) algorithm for the normal Dirac

equation, while nmx specifies the maximal number of CG iterations that may be

performed and res the desired relative residue of the calculated solutions.
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Sections start with a title in square brackets [...] and the lines within a section

can be ordered arbitrarily. The section quoted above, for example, could equivalently

be written as

[Solver 3]

res 1.0e-10

solver CGNE # Should try a better solver

nmx 256

Any text appearing to the right of the number sign # is considered to be a comment.

A section is delimited by its headline (the text in square brackets) and the headline

of the next section. Blank lines are ignored and sections can appear in any order in

the input file.

Once the program has read the parameter file, the data are entered into a param-

eter data base and can, from there, be retrieved by the subprograms that depend on

some of the parameter values. The data base is administered by a set of modules in

the directory modules/flags. In case the exact meaning of a particular parameter

is unclear, it may be helpful to read the explanations on the top of these program

files.

3. Actions

The lattice theory is defined by the lattice sizes, the total action and the boundary

conditions. A description of the latter and, in the case of the simulation programs,

of all parts of the action must be included in the parameter file.

3.1 Action parameters and boundary conditions

The basic parameters of the theory are the inverse gauge coupling beta, the coeffi-

cient c0 of the plaquette term in the gauge action [1], the hopping parameters kappa

of the sea quarks and the coefficient csw of the Sheikholeslami–Wohlert improvement

term [2]. In the parameter files, their values are specified in a section of the form

[Lattice parameters]

beta 5.3

c0 1.66666667

kappa 0.13635 0.13620 0.13550

csw 1.9078
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There are three numbers on the line with tag kappa in this example, which could be

the values of the light, strange and charm quark hopping parameters. In principle,

any number of values can be listed here. Hopping parameter values are referred to

by their position in the list, the first value having position 0, the second position 1,

and so on.

The present version of the openQCD programs supports four types of boundary

conditions in time [1,2]. Periodic boundary conditions (anti-periodic for the quark

fields) are selected by including the section

[Boundary conditions]

type 3

in the parameter file. The integer value on the line with tag type sets the type

of boundary condition (0: open, 1: Schrödinger functional (SF), 2: open-SF, 3:

periodic). In the case of open boundary conditions [3], the section

[Boundary conditions]

type 0

cG 1.10

cF 0.95

has two further lines, where the values of the boundary improvement coefficients cG

and cF are specified. These lines are also required when SF boundary conditions are

chosen. In addition, the parameter section

[Boundary conditions]

type 1

phi 1.57 0.0

phi’ 2.75 -1.89

cG 1.10

cF 0.95

must include the angles phi and phi’ that define the boundary values of the gauge

field at time 0 and T [1] (the two values on these lines are the values of the angles

φ1, φ2 at time 0 and φ′1, φ
′
2 at time T , respectively).

If open-SF boundary conditions are chosen, the boundary values of the gauge field

at time T and thus the angles φ′1, φ
′
2 must be specified as before. The parameter

section then looks like

[Boundary conditions]

type 2

phi’ 2.75 -1.89
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cG 1.10

cG’ 1.08

cF 0.95

cF’ 0.93

Note that the values of the boundary improvement coefficients at time 0 (cG,cF) and

time T (cG’,cF’) need not be the same.

3.2 Gauge action

Currently the supported gauge actions include the Wilson plaquette action, the tree-

level improved Symanzik action and, more generally, any linear combination of these

[1]. Since the parameters of the gauge action are already specified in the Lattice

parameters and Boundary conditions sections, it suffices to include the lines

[Action 0]

action ACG

in the parameter file to instruct the program that the total action of the theory

includes the gauge action. This section is the first example of an action section. It

has a single line containing the tag ACG, which specifies that the action number 0 is

the gauge action.

3.3 Twisted-mass pseudo-fermion actions

Pseudo-fermion actions

Spf = (φ, (D†D + µ2
0)

−1φ) (3.1)

with a single twisted-mass parameter µ0 are described by an action section

[Action 1]

action ACF TM1

ipf 0

im0 0

imu 0

isp 3

The number in the headline is an index that serves as a tag for the different actions.

It can be chosen arbitrarily in the range 0,1,...,31, but must be unambiguous,

i.e. there may be at most one action section in the parameter file with a given index.

The action (3.1) depends on the pseudo-fermion field φ, the bare quark massm0 in

the Dirac operator and the twisted mass µ0. Pseudo-fermion fields are distinguished
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by an index ipf=0,1,...,npf-1, where npf is the total number of these fields. The

bare sea-quark masses m0 are referred to by an index im0=0,1,... that labels the

corresponding sea-quark hopping parameters κ = (8 + 2m0)
−1 (subsect. 3.1), while

twisted masses are specified by giving their index imu in an array of values defined

elsewhere (see subsect. 4.1). The last parameter in the section, isp, is the index of

the solver for the Dirac equation, which is to be used by the program that computes

the action (3.1) (see sect. 5 for the list of the available solvers).

Hasenbusch pseudo-fermion actions

Spf = (φ, (D†D + µ2
1)(D

†D + µ2
0)

−1φ) (3.2)

with two twisted-mass parameters µ0 and µ1 are described by an action section

[Action 2]

action ACF TM2

ipf 1

im0 0

imu 0 1

isp 1 0

As explained in the notes [4], these actions arise when the light-quark determinant

is split into several factors. The two masses correspond to the two entries on the

lines with tag imu and isp. Note that one needs to specify two solvers, the first

for the Dirac equation with twisted mass µ0 and the second for the equation with

twisted mass µ1 (which must be solved when φ is generated at the beginning of the

molecular-dynamics trajectories).

3.4 Even-odd preconditioned pseudo-fermion actions

When even-odd preconditioning is used, the pseudo-fermion action (3.1) gets re-

placed by

Spf = (φ, (D̂†D̂ + µ2
0)

−1φ)− 2 ln detDoo, (3.3)

where D̂ is the even-odd preconditioned Dirac operator and Doo the odd-odd part of

the Dirac operator [2]. The factor detDoo is referred to as the “small determinant”

and it is understood that the pseudo-fermion field φ vanishes on the odd sites of the

lattice.
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Apart from the action line, the parameter sections

[Action 3]

action ACF TM1 EO SDET

ipf 2

im0 0

imu 0

isp 3

describing the action (3.3) look the same as the ones describing the actions without

even-odd preconditioning. The same comment applies to the sections

[Action 4]

action ACF TM2 EO

ipf 3

im0 0

imu 0 1

isp 1 0

that the describe the even-odd preconditioned version

Spf = (φ, (D̂†D̂ + µ2
1)(D̂

†D̂ + µ2
0)

−1φ) (3.4)

of the Hasenbusch pseudo-fermion action (there is no small-determinant contribution

in this case).

3.5 Rational function actions

The RHMC algorithm for the strange and the charm quark is based on the Zolotarev

rational approximation of the operator (D̂†D̂)−1/2 (see ref. [5] for detailed explana-

tions). Zolotarev rational functions are defined by a section

[Rational 0]

degree 10

range 0.025 6.02

that specifies the degree (number of poles) of the function and the approximation

range on the axis of eigenvalues of (D̂†D̂)1/2. The range should be sufficiently large to

include, with probability practically equal to 1, the whole spectrum of the operator.

The poles and zeros of the Zolotarev rational functions are ordered such that

the larger ones come first. For reasons of stability and performance, the rational

function should be split into a product of factors, each including a range of poles
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and zeros [5]. The pseudo-fermion action associated with such a factor is described

by a section

[Action 5]

action ACF RAT

ipf 4

im0 1

irat 0 7 9

isp 1

The parameters ipf, im0 and isp in this section have the same meaning as in the

case of the twisted-mass pseudo-fermion actions, while irat specifies the index of

the rational function and the range of poles included in the factor. Poles are counted

from zero and pole ranges are inclusive, i.e. irat 0 7 9 selects the poles number 7,

8 and 9 from the rational function with index 0.

Since even-odd preconditioning is used for the strange and the charm quark, the

associated quark determinants contain the small determinant detDoo. It is conve-

nient to combine this factor with the rational factor that contains the largest poles.

The corresponding section is

[Action 6]

action ACF RAT SDET

ipf 5

im0 1

irat 0 0 6

isp 4

For a given rational function and mass index im0, the action sections must be such

that all poles and the small determinant are included once. In the example discussed

here, this is achieved with two factors, but one is free to split the rational functions

in more factors. Note that for each factor a different pseudo-fermion field must be

used.

4. Molecular-dynamics parameters

The simulation algorithm implemented in the openQCD package involves a numer-

ical integration of the molecular-dynamics equations that derive from the chosen
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action. Apart from the action, this requires the integration scheme (the “integra-

tor”) to be specified as well as the solvers used for the computation of the various

pseudo-fermion forces.

4.1 HMC parameters

Some basic parameters of the algorithm are collected in the section

[HMC parameters]

actions 0 1 2

npf 6

mu 0.015 0.2 1.0

nlv 2

tau 1.0

The numbers on the action line are the indices of the actions that are to be included

in the molecular-dynamics Hamilton function. If some of these actions depend on

twisted mass parameters, their values must be listed on the line with tag mu. As

already mentioned, the action sections refer to these values by quoting their position

imu (counting from 0) in the array. The parameter npf specifies the total number

of pseudo-fermion fields that must be allocated.

The last two parameters, nlv and tau, define the number of integrator levels and

the molecular-dynamics trajectory length (see ref. [4] for the normalization of the

latter; the integration scheme is discussed in subsect. 4.3).

4.2 Forces

The forces that derive from the actions ACG,...,ACF RAT SDET discussed in sect. 3

are distinguished by the symbols FRG,...,FRF RAT SDET. The corresponding sec-

tions are

[Force 0]

force FRG

[Force 1]

force FRF TM1

isp 6

ncr 4

[Force 2]

force FRF TM2

isp 7
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ncr 0

[Force 3]

force FRF TM1 EO SDET

isp 6

ncr 4

[Force 4]

force FRF TM2 EO

isp 7

ncr 0

[Force 5]

force FRF RAT

isp 8

[Force 6]

force FRF RAT SDET

isp 9

In each case, the index in the headline must match the index of the associated action.

The force tags (such as FRF TM2 EO) could be inferred from the corresponding action

sections, but are required in order to improve the readability of the input parameter

files.

Most parameters of the forces are inherited from those of the associated actions.

The solver parameter sets selected by the indices isp may however be different. In

the case of the forces FRF TM2 and FRF TM2 EO, the specified solver is used for the

solution of the Dirac equation with twisted mass µ0. No solver is needed here for

the second twisted mass µ1.

The parameter ncr controls the chronological propagation of the solutions of the

Dirac equation along the molecular-dynamics trajectories. If ncr is set to a positive

value, the simulation program attempts to reduce the number of solver iterations

required for the computation of the specified force by extrapolating the previous

ncr solutions in molecular-dynamics time. The feature is switched off if ncr is set

to zero.

4.3 Integration scheme

The numerical integration of the molecular-dynamics equations makes use of a hier-

archical integrator that can be specified on the input parameter file. Currently three

elementary integration schemes are supported, the leapfrog, the 2nd order Omelyan–
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Mryglod–Folk (OMF) and a 4th order OMF integrator. They are distinguished by

the symbols LPFR, OMF2 and OMF4.

Hierarchical integrators have several levels with increasing integration step sizes.

They are described by the total integration time tau, the number nlv of levels,

the elementary integrators used at each level and the forces integrated there. The

parameters tau and nlv are part of the HMC parameter set (see subsect. 4.1). Each

level is then described by a section like

[Level 2]

integrator LPFR

nstep 12

forces 2 4 5

In this example, the simulation program is instructed to use the leapfrog integrator

at the third level (levels are counted from 0). The elementary leapfrog integration

step is to be applied 12 times and the forces integrated at this level are the ones

with index 2,4 and 5. If the level is the top level, the integration step size for these

forces is thus tau/12.

An example of a complete integrator description is provided by the following three

sections:

[Level 0]

integrator OMF4

nstep 1

forces 0

[Level 1]

integrator OMF4

nstep 1

forces 1 2 3

[Level 2]

integrator OMF2

lambda 0.16667

nstep 6

forces 4

There are three levels in this case, with average step sizes equal to tau/300, tau/60

and tau/12 at level 0, 1 and 2, respectively (note that the OMF2 and OMF4 integrators

update the gauge field 2 and 5 times per application). The OMF2 integrator depends
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on a parameter lambda, whose value must be given at each level where this integrator

is used. See modules/update/README.mdint for further explanations.

5. Solver parameters

All solvers referred to in the action and force sections must be described in the input

parameter file. The solvers are labeled by an index isp in the range 0,1,...,31 in

much the same way as the actions and the forces. There is no one-to-one correspon-

dence between solver programs and solver sections in the parameter file. One may,

for example, have two sections

[Solver 3]

solver CGNE

nmx 256

res 1.0e-10

[Solver 4]

solver CGNE

nmx 256

res 1.0e-8

where the only difference is the value of the desired residue res. By setting isp=3 or

isp=4 in an action or force section, the numerical accuracy of the action and force

computations can then be individually controlled.

5.1 Conjugate gradient solvers

There are two conjugate gradient solvers, the ordinary CG algorithm for the normal

Dirac equations,

(D†D + µ2)ψ = η and (D̂†D̂ + µ2)ψ = η, (5.1)

and the mult-shift CG algorithm for the even-odd preconditioned simultaneous equa-

tions [5,6]

(D̂†D̂ + µ2
k)ψk = η k = 0, 1, . . . , n− 1. (5.2)

Examples of parameter sections describing solvers based on the former have already

appeared in this note. The parameter sections
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[Solver 3]

solver MSCG

nmx 256

res 1.0e-10

for the multi-shift solver look practically the same. Note that this solver can only

be used for rational function actions and forces.

5.2 SAP preconditioned solvers

There are currently two solvers that make use of the Schwarz Alternating Procedure

(SAP) as preconditioner for the GCR algorithm. When these solvers are used, the

block size bs of the SAP block grid needs to be specified in a separate section

[SAP]

bs 4 6 6 4

The ordinary SAP preconditioned GCR algorithm is then described by a parameter

section

[Solver 7]

solver SAP GCR

nkv 16

isolv 1

nmr 4

ncy 5

nmx 24

res 1.0e-8

where nkv is the maximal number of Krylov vectors that may be generated before

the GCR algorithm is restarted, while nmx is the maximal total number of generated

Krylov vectors and res the desired relative residue of the calculated solutions. All

other parameters in the section describe the particular SAP preconditioner to be

used, namely ncy and nmr specify the number of SAP cycles and block solver itera-

tions to be applied and the flag isolv indicates whether the block solver is even-odd

preconditioned (isolv=1) or not (isolv!=1).

The other solver that makes use of the SAP is the deflated SAP preconditioned

GCR solver. This solver is described by a section

[Solver 8]

solver DFL SAP GCR

nkv 16

isolv 1
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nmr 4

ncy 5

nmx 24

res 1.0e-8

that coincides with the section for the ordinary SAP preconditioned solver except

for the solver symbol.

5.3 Deflation parameters

When the deflated solver is used, the parameters related to the deflation subspace

must be specified in a few further sections. The block size bs of the deflation block

grid and the number Ns of deflation modes per block are set by including the section

[Deflation subspace]

bs 8 4 4 4

Ns 20

For the generation of the deflation subspace, a bootstrapped inverse iteration algo-

rithm is employed. In this process, the hopping parameter kappa and the twisted

mass mu are set to the values specified in the section

[Deflation subspace generation]

kappa 0.1350

mu 0.01

ninv 9

nmr 4

ncy 4

The other parameters set in this section include the number ninv of inverse iteration

steps to be applied and the numbers ncy and nmr of SAP cycles and block solver

iterations to be used when the SAP preconditioner is invoked.

In the course of the inverse iteration, and in each iteration of the deflated solver,

a deflation projection is applied that requires the little Dirac equation to be solved

with low precision. The section

[Deflation projection]

nkv 24

nmx 256

res 1.0e-2

sets the parameters of the GCR solver used for this task. As usual, nkv, nmx and res

are, respectively, the number of Krylov vectors generated before the GCR algorithm
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is restarted, the maximal total number of vectors that may be generated and the

desired relative residue of the calculated solution.

Along the molecular-dynamics trajectories, the deflation subspace looses its effi-

ciency and must therefore be refreshed from time to time. This feature is controlled

by the parameter section

[Deflation update scheme]

dtau 0.091

nsm 1

where dtau sets the interval in molecular-dynamics time after which the subspace

is updated and nsm the number of smoothing steps to be applied in this process.

The subspace updates can be turned off by setting nsm=0. Clearly, the section is not

needed in measurement programs, where the deflated solver may be used for quark

propagator calculations, for example.

6. Reweighting factors

In general, the ensembles of field configurations generated in openQCD simulations

must be reweighted. The rational approximation used for the strange and the charm

quark determinants, for example, requires reweighting in order to correct for the

approximation error. In the case of the light quark doublet, reweighting is required if

a twisted mass term was added as infrared regulator [7]. For a given ensemble of field

configurations, the program ms1 computes stochastic estimates of the reweighting

factors specified in a parameter file.

The openQCD package currently does not support reweighting in the bare quark

masses [9,10], but a module providing this functionality can be downloaded from

http://www-ai.math.uniwuppertal.de/~leder/mrw/.

6.1 Light quark reweighting factors

In ref. [7], two kinds of twisted-mass regularizations of the light quark determinant

were proposed which amount to replacing

det{D†D} → det{D†D + µ2} (6.1)

and

det{D†D} → det{(D†D + µ2)2(D†D + 2µ2)−1} (6.2)
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respectively. The twisted mass parameter µ > 0 provides the desired infrared regu-

larization and is usually set to a value on the order of light quark mass.

The associated reweighting factors,

W1 = det{D†D(D†D + µ2)−1}, (6.3)

W2 = det{D†D(D†D + 2µ2)(D†D + µ2)−2}, (6.4)

can be estimated stochastically using Gaussian random quark fields. With a reason-

ably small number of random fields, a straightforward estimation may however turn

out to be rather noisy, especially so on lattices where the lowest eigenvalues of the

lattice Dirac operator fluctuate to values much smaller than the regularization mass

µ. In these cases, the reweighting factors are better broken up into several factors

according to [8–10]

W1 =
n
∏

l=1

det{R1(µl−1, µl)}, 0 = µ0 < µ1 < . . . < µn = µ, (6.5)

W2 =
n
∏

l=1

det{R2(µl−1, µl)}, (6.6)

where

R1(µi, µj) =
D†D + µ2

i

D†D + µ2
j

, (6.7)

R2(µi, µj) =
(D†D + µ2

i )
2(D†D + 2µ2

j )

(D†D + 2µ2
i )(D

†D + µ2
j )

2
. (6.8)

The factors det{Ra(µl−1, µl)} are then estimated stochastically by choosing N ran-

dom quark fields η1, . . . , ηN with normal distribution and by calculating the estima-

tors

1

N

N
∑

k=1

exp{−(ηk, [Ra(µl, µl−1)− 1]ηk)}. (6.9)

It is understood here that a fresh set of N random fields is generated for each factor.
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Note that the eigenvalues of

R1(µi, µj)− 1 =
µ2
i − µ2

j

D†D + µ2
j

, (6.10)

R2(µi, µj)− 1 =
µ2
i − µ2

j

2µ2
i − µ2

j

{

µ2
j (µ

2
i − µ2

j )

(D†D + µ2
j )

2
+

2µ4
i

(D†D + 2µ2
i )(D

†D + µ2
j )

}

, (6.11)

are all strictly positive if µi > µj ≥ 0.

In the parameter files, the reweighting factors are described by sections of the

form

[Reweighting factor 0]

rwfact RWTM1

im0 0

mu 0.0001 0.0005 0.001 0.003

isp 0

nsrc 24

As usual the index in the headline serves to distinguish different reweighting factors.

The line with tag rwfact selects the reweighting factor type (RWTM1 for W1 and

RWTM2 for W2), while the other parameters, im0, mu, isp and nsrc, are the index of

the bare quark massm0, the list µ1, . . . , µn of the twisted masses in the factorizations

(6.5),(6.6), the index of the solver for the Dirac equation to be used and the number

N of random source fields to be generated for each factor det{Ra(µl−1, µl)} and

each gauge-field configuration. A different solver can optionally be chosen for each

factor by replacing the single solver index on the line with tag isp by a list of as

many indices as there are twisted masses.

If even-odd preconditioning is used, eqs. (6.1) and (6.2) get replaced by

det{D†D} → det{(Doo)
2} det{D̂†D̂ + µ2}, (6.12)

det{D†D} → det{(Doo)
2} det{(D̂†D̂ + µ2)2(D̂†D̂ + 2µ2)−1}. (6.13)

The associated reweighting factors,

Ŵ1 = det{D̂†D̂(D̂†D̂ + µ2)−1}, (6.14)

Ŵ2 = det{D̂†D̂(D̂†D̂ + 2µ2)(D̂†D̂ + µ2)−2}, (6.15)
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can again be estimated stochastically following the lines above. The corresponding

parameter sections in the input files are as before except that the symbols RWTM1

and RWTM2 must be replaced by RWTM1 EO and RWTM2 EO.

6.2 Strange and charm quark reweighting factors

The reweighting factors required for the heavier quarks are given by

WR = det{D̂R}, (6.16)

where R is the rational function used to approximate the operator (D̂†D̂)−1/2 (see

ref. [5] for further details). In the input parameter files, these factors are described

by sections like

[Reweighting factor 1]

rwfact RWRAT

im0 1

irp 0

np 6 4

isp 1 0

nsrc 1

As before, im0 is the index of the bare mass m0 of the quark considered and nsrc

the number of random source fields to be used for the stochastic estimation of WR.

The other parameters select the rational function R and determine exactly how the

reweighting factor is to be computed.

Rational functions are defined by separate parameter sections (see subsect. 3.5).

The parameter irpmust be set to the index of the section that describes the function

R. As already mentioned, the poles of R are ordered such that the larger ones come

first. The program that computes the reweighting factor expands R into partial

fractions and logically divides the pole terms into groups Rk of terms,

R = A{1 +R0 +R1 . . .+Rn−1}, (6.17)

where R0 contains the first few poles, R1 the next few poles, and so on. The figures

on the line with tag np specify the numbers of poles in these groups. In the example

above, there are two parts, R0 and R1, where R0 includes the poles 0, 1, . . . , 5 and

R1 the poles 6, . . . , 9. Any sequence of positive numbers can appear on the line with

tag np subject to the constraint that their sum coincides with the number of poles

of R.
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For each part Rk, the solver for the (twisted mass) Dirac equation can be chosen

separately. The indices of the corresponding solver parameter sets must be given

on the line with tag isp, where it is understood that the first solver is to be used

when the operator R0 is applied to the source field, the second when R1 is applied,

and so on. Currently the supported solvers are MSCG, SAP GCR and DFL SAP GCR (see

sect. 5).
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