
Implementation of the lattice Dirac operator ∗

Martin Lüscher January 2012; revised November 2013

1. Introduction

In this note, the O(a)-improved Wilson–Dirac operator that is implemented in the

openQCD package is defined, with all normalization conventions and boundary con-

ditions specified explicitly. Even-odd preconditioning and some technical issues con-

cerning the Sheikholeslami–Wohlert term are also covered.

2. Definition of the lattice Dirac operator

2.1 Quark fields

The theory is set up on a four-dimensional hypercubic lattice of size N0 × N1 ×

N2 × N3, where Nµ is assumed to be even and not smaller than 4. For notational

convenience, the lattice spacing is set to unity in this note. Unless stated otherwise,

the Cartesian coordinates (x0, x1, x2, x3) of a lattice point x are assumed to be in

the range 0 ≤ xµ < Nµ.

Quark fields ψ(x) live on the sites x of the lattice. They have two indices, a Dirac

index A = 1, . . . , 4 and a colour index α = 1, 2, 3 on which the gauge field acts. A

quark field thus has 12N0N1N3N4 complex components. In the openQCD package,

SU(3) matrices, colour vectors and quark spinors are represented by structures that

can be treated as single data items (see include/su3.h).

Depending on the boundary conditions for the gauge field [2], Schrödinger func-

tional (SF) or anti-periodic boundary conditions are imposed on the quark fields in

∗ Based in part on notes written in collaboration with Peter Weisz and Ulli Wolff [1].

1

Table 1. Boundary conditions supported by the openQCD programs

Type Time extent T Gauge field Quark fields

0 N0 − 1 open SF

1 N0 SF SF

2 N0 open-SF SF

3 N0 periodic anti-periodic

the time direction (see table 1). In all cases, periodic boundary conditions are chosen

in the space directions. The boundary conditions can be selected in the openQCD

main programs by specifying the type of boundary condition (the index listed in the

first column of table 1) in the input parameter file [3]. Note that the effective time

extent T of the lattice (second column) depends on the boundary conditions.

With SF boundary conditions, the quark fields satisfy

ψ(x)|x0=0
= 0 (2.1)

and additionally

ψ(x)|x0=N0−1
= 0 (2.2)

in the case of the boundary conditions of type 0. The dimension of the space of quark

fields is thus reduced to 12(N0−1)N1N2N3 and 12(N0−2)N1N2N3, respectively. All

further specifications required for a complete description of the boundary conditions

are deferred to the following subsections, since they concern the action of the lattice

Dirac operator on the quark fields rather than the field space.

2.2 Wilson–Dirac operator

The (unimproved) Wilson–Dirac operator can be written in the compact form

Dw =
3∑

µ=0

1

2
{γµ(∇

∗
µ +∇µ)−∇∗

µ∇µ} , (2.3)

where

∇µψ(x) = U(x, µ)ψ(x+ µ̂)− ψ(x), (2.4)

2

∇∗
µψ(x) = ψ(x)− U(x− µ̂, µ)−1ψ(x− µ̂), (2.5)

denote the gauge-covariant forward and backward lattice derivatives in presence of

the gauge field U(x, µ). The symbol µ̂ here stands for the unit vector in direction µ

and the Dirac matrices γµ are specified in appendix A.

More explicitly, in the time range 0 < x0 < N0 − 1, the action of the operator on

a given quark field ψ is given by

Dwψ(x) = 4ψ(x)−

3∑

µ=0

1

2

{
U(x, µ)(1− γµ)ψ(x+ µ̂) + U(x− µ̂, µ)−1(1 + γµ)ψ(x− µ̂)

}
, (2.6)

where it is understood that the space coordinates xk±1 are taken modulo Nk for all

k = 1, 2, 3 (thus imposing periodic boundary conditions in these directions). Note

that the terms in eq. (2.6) refer to the quark field at time x0 and x0 ± 1 only and

are therefore unambiguously defined when x0 is in the specified range.

The action of the Dirac operator at time x0 = 0 and x0 = N0 − 1, on the other

hand, depends on the boundary conditions and will be defined in subsection 2.4.

2.3 O(a)-improved lattice Dirac operator

Apart from the Sheikholeslami–Wohlert (SW) term [4] and a boundary O(a) correc-

tion term, it is now convenient to include the bare mass parameter m0 in the Dirac

operator (the operator thus becomes dependent on the quark flavour considered).

The massive O(a)-improved Wilson–Dirac operator is then given by

D = Dw + δDv + δDb +m0, (2.7)

where

δDvψ(x) = csw

3∑

µ,ν=0

i
4
σµν F̂µν(x)ψ(x), (2.8)

δDbψ(x) = {(cF − 1)δx0,1 + (c′F − 1)δx0,T−1}ψ(x). (2.9)

In these equations, csw, cF and c′F are improvement coefficients, the latter satisfying

c′F = cF for boundary conditions of type 0 and 1, (2.10)

c′F = cF = 1 for boundary conditions of type 3 (2.11)

3

x

xµ

ν

Fig. 1. Graphical representation of the products of gauge field variables contributing

to the lattice field strength tensor (2.12). Each square corresponds to one of the terms

in eq. (2.13).

(and thus δDb = 0 in the case of periodic boundary conditions). For the field

strength of the gauge field,

F̂µν(x) =
1

8
{Qµν(x)−Qνµ(x)} , (2.12)

Qµν(x) = U(x, µ)U(x+ µ̂, ν)U(x+ ν̂, µ)−1U(x, ν)−1+

U(x, ν)U(x− µ̂+ ν̂, µ)−1U(x− µ̂, ν)−1U(x− µ̂, µ)+

U(x− µ̂, µ)−1U(x− µ̂− ν̂, ν)−1U(x− µ̂− ν̂, µ)U(x− ν̂, ν)+

U(x− ν̂, ν)−1U(x− ν̂, µ)U(x+ µ̂− ν̂, ν)U(x, µ)−1, (2.13)

the usual symmetric lattice expression is taken (see fig. 1). The normalization con-

ventions adopted here coincide with the ones in ref. [5]. In particular, at tree-level of

perturbation theory, on-shell O(a)-improvement is achieved by setting csw = cF =

c′F = 1.

2.4 Action of the Dirac operator near the boundaries

For all types of boundary conditions and at all times x0 in the range 0 < x0 < N0−1,

the action of the Dirac operator D on a given quark field ψ(x) is given by eqs. (2.6)–

(2.13). In the specified range of time, all terms in these formulae are completely well

defined and need no further explanation.

At time x0 = 0 and x0 = N0 − 1, the action of the Dirac operator depends on the

type of boundary conditions:

4

Type 0. Here one simply sets

Dψ(x)|x0=0
= Dψ(x)|x0=N0−1

= 0. (2.14)

This rule is in fact implied by the requirement that the Dirac operator must be a

linear operator in the space of quark fields satisfying eqs. (2.1) and (2.2).

Type 1 and 2. Consistency with the condition (2.1) requires again that

Dψ(x)|x0=0
= 0, (2.15)

but at x0 = N0 − 1 one may choose the action of the Dirac operator to be given by

the same equations as in the bulk of the lattice together with the prescription

ψ(x+ 0̂)
∣∣
x0=N0−1

= 0, (2.16)

which imposes Schrödinger functional boundary conditions at time N0.

Type 3. In this case, the action of the Dirac operator is again given by eqs. (2.6)–

(2.13), at all times in the range 0 ≤ x0 ≤ N0 − 1, where

ψ(x)|x0=−1
= − ψ(x)|x0=N0−1

, ψ(x)|x0=N0
= − ψ(x)|x0=0

, (2.17)

is to be inserted in eq. (2.6) for the otherwise undefined components of the quark

field at time −1 and N0.

In all cases, the field tensor and the SW term are only required at the interior points

of the lattice. Both are unambiguously defined through eqs. (2.8),(2.12) and (2.13),

at all these points, once the boundary conditions for the gauge field are taken into

account. With the rules stated above, the definition of the lattice Dirac operator D

is thus complete.

2.5 Block Dirac operators

Some of the solvers for the Dirac equation included in the openQCD package make

use of a domain-decomposition (SAP) preconditioner. The domains are taken to be

hypercubic blocks of lattice points. On each block Λ, the block Dirac operator DΛ

is defined by

DΛ = PΛDPΛ, (2.18)

5

where

PΛψ(x) =

{
ψ(x) if x ∈ Λ,

0 otherwise,
(2.19)

projects any quark field ψ to the block.

The projection (2.18) amounts to imposing Dirichlet boundary conditions on the

block boundaries. In addition, the quark fields on the blocks must satisfy the con-

straints (2.1),(2.2), if these are part of the boundary conditions on the global lattice.

3. Even-odd preconditioning

The discussion in the following applies to both the global and block Dirac operators,

but for simplicity only the global Dirac operator is considered.

A lattice point x is classified as even or odd depending on whether the sum of its

coordinates, x0 + x1 + x2 + x3, is even or odd. Any quark field ψ may be split into

two parts,

ψ = ψe + ψo, (3.1)

where ψe is supported on the even sites and ψo on the odd sites. If the lattice points

are labeled such that the even ones come first, the Dirac operator assumes the block

form

D =

(
Dee Deo

Doe Doo

)
. (3.2)

The operators Deo and Doe, for example, are the sums of the hopping terms in

eq. (2.6) from the odd to the even and the even to the odd points respectively.

In the following, it is taken for granted that the diagonal part

Dee +Doo =M0 + csw

3∑

µ,ν=0

i
4
σµν F̂µν , (3.3)

M0ψ(x) = {4 +m0 + (cF − 1)δx0,1 + (c′F − 1)δx0,T−1}ψ(x), (3.4)

6

of the Dirac operator is invertible. For any given source field η, the Dirac equation

Dψ = η can then be solved by first solving

D̂ψe = ηe −DeoD
−1
oo ηo, (3.5)

for ψe, where

D̂ = Dee −DeoD
−1
oo Doe (3.6)

denotes the even-odd preconditioned Dirac operator. After that the odd field com-

ponent is obtained through

ψo = D−1
oo {ηo −Doeψe} . (3.7)

Note that D̂ is a linear operator acting on quark fields defined on the sublattice of

all even points.

Even-odd preconditioning goes along with the factorization

detD = detDoo det D̂ (3.8)

of the quark determinant. An important detail to keep in mind is the fact that, by

definition, Doeψ(x) vanishes at time 0 and N0−1 if the boundary conditions require

Dψ(x) to vanish there. The operator product on the right of eq. (3.6) then involves

the inverse of Doo on the odd sites x at all other times only, and for the same reason,

the determinant detDoo is a product of determinants, one for each odd point in this

range of time.

4. Computation of Dee and Doo

The computation of the SW term tends to be slow, because there are quite many

products and sums of SU(3) matrices that must be evaluated. Taking the inverse

of Doo, as is required for even-odd preconditioning, makes things even worse. The

diagonal parts of the Dirac operator are therefore computed separately and stored

in an array before the operator is applied. As long as the gauge field is unchanged,

the array does not need to be updated, which saves a lot of work.

7

4.1 How many multiplications are required?

In the representation of the Dirac matrices specified in appendix A, the Pauli term

3∑

µ,ν=0

i
4
σµν F̂µν =

3∑

k=1

i
16

(
σk (Ek − Bk) 0

0 −σk (Ek + Bk)

)
(4.1)

has a block diagonal form. A factor 8 was included here in the definition

Ek = 8F̂0k, Bk =
3∑

l,j=1

4ǫkljF̂lj , (4.2)

of the electric and magnetic components of the field strength. They are then simply

equal to Qµν −Q†
µν for some µ and ν.

The computation of the matrix Qµν(x) at fixed x, µ, ν requires 12 multiplications

of SU(3) matrices. A straightforward code for the SW term will therefore perform 72

multiplications per point. One can do better by running through all plaquettes in the

(0, 1)-plane, then those in the (0, 2)-plane, and so on. On each plaquette there are

four ordered products of link variables to be added to the matrices (Qµν−Q
†
µν)(y) at

the corners y of the plaquette. This requires 8 matrix multiplications per plaquette

and thus a total of 48 multiplications per lattice point.

4.2 Storage format

The program that performs these computations stores the computed matrices

M(x) =M0(x) + csw

3∑

µ,ν=0

i
4
σµν F̂µν(x) (4.3)

in an array of data structures. First come the matrices at all even points and then

those at all odd points. In Dirac space the matrices have the block form

M(x) =

(
A+(x) 0

0 A−(x)

)
, (4.4)

A±(x) =M0(x)± csw

3∑

k=1

i
16
σk {Ek(x)∓ Bk(x)} , (4.5)

as is the case for the Pauli term (4.1).

8

The fields Ek(x) and Bk(x) are antihermitian 3× 3 matrices in colour space. So if

the Pauli matrices in eq. (4.5) are written out as in

3∑

k=1

iσkak =

(
ia3 ia1 + a2

ia1 − a2 −ia3

)
, (4.6)

the matrices A±(x) assume the form of hermitian 6×6 matrices. Such matrices can

be represented by an array u0, . . . , u35 of real numbers according to

u0 u6 + iu7 u8 + iu9 u10 + iu11 u12 + iu13 u14 + iu15
. u1 u16 + iu17 u18 + iu19 u20 + iu21 u22 + iu23
. . u2 u24 + iu25 u26 + iu27 u28 + iu29
. . . u3 u30 + iu31 u32 + iu33
. . . . u4 u34 + iu35
. u5

, (4.7)

where the entries below the diagonal are related to the other entries by hermiticity.

The matrices A±(x) are thus stored in structures whose only element is an array of

this kind.

4.3 Miscellaneous remarks

As explained in subsect. 2.4, the SW term is only needed at the interior points of

the lattice. Independently of the quark mass and the improvement coefficients, the

matrices A±(x) at the boundaries of the lattice (if any) are set to unity when the

SW term is calculated.

In the openQCD package, the field tensor (2.12) is stored in memory and is reused

when it is up-to-date. Changes in the quark mass are therefore propagated to the

SW term at nearly no cost.

5. Inversion of Dee and Doo

As explained in sect. 3, even-odd preconditioning requires the inversion of the diag-

onal part Doo of the Dirac operator on the odd sites of the lattice. This amounts

to computing the inverse of a large number of 6× 6 matrices. Householder triangu-

larization with subsequent inversion by back-substitution is a numerically safe and

reasonably fast method that can be applied here. The technique is widely used and

9

is described in many text books (see refs. [6,7], for example). The precise form of the

algorithm that is implemented in the openQCD package is discussed in this section.

The fact that Doo may turn out to be ill-conditioned is a possible source of diffi-

culty. Catastrophically large rounding errors are then practically unavoidable when

the matrices M(x) are inverted (see appendix B). The program that performs the

inversion returns with a non-zero error code in this case, which is propagated to the

top level of the simulation program.

5.1 Householder triangularization

In the following, the inversion of a general complex n×nmatrix A is considered. The

Householder algorithm transforms the matrix to upper triangular form by applying

a series of reflections of the type

R = 1− 2
u⊗ u†

‖u‖2
, (5.1)

where u is some non-zero complex vector in n dimensions. One needs n−1 reflections

to completely triangularize A, i.e. the triangular matrix T that one constructs is

given by

T = Rn−1Rn−2 . . . R1A. (5.2)

The basic idea is to choose the reflections Rk recursively in such a way that the

matrix

Rj−1Rj−2 . . . R1A (5.3)

has no non-zero entries below the diagonal in the first j − 1 columns.

Suppose we have achieved this for all j ≤ k and let us denote the k’th column

vector of the matrix Rk−1 . . . R1A by v. We then take Rk to be of the form (5.1)

with

ul =

0 if l < k,

vk − yk if l = k,

vl if l > k,

(5.4)

where yk is given by

yk = −
vk
|vk|

r, r2 =
n∑

j=k

|vj |
2, r ≥ 0. (5.5)

10

It is easy to check that the first k − 1 columns of Rk−1 . . . R1A are left intact when

this matrix is multiplied with Rk, while the k’th column vector becomes

(v1, . . . , vk−1, yk, 0, . . . , 0). (5.6)

If we continue in this way up to k = n−1, the final matrix (5.2) will hence be upper

triangular with diagonal elements y1, . . . , yn−1,−yn.

Evidently the algorithm breaks down if u vanishes for some k. Noting

1

2
‖u‖2 = r2 + r|vk|, (5.7)

it follows that this happens if and only if A is singular. During the execution of the

program one can easily check that r is positive and take the appropriate action if it

vanishes.

Another potentially unstable situation occurs when vk = 0. It turns out, however,

that this does not present a fundamental difficulty. If vk is so small that |vk| +

r = r to machine precision, we simply set yk = −r. The reflection Rk, defined

through eqs. (5.1),(5.4), then transforms the column vector v to the vector (5.6) up

to rounding errors. Equation (5.7) remains true in the same sense, i.e. to machine

precision. The choice yk = −r is hence completely satisfactory in this case.

5.2 Inversion of T

We now describe the computation of the inverse S of the triangular matrix T , as-

suming that none of the diagonal elements of T vanish. It can be shown that S is

also upper triangular, i.e. the matrix elements tij and sij of T and S are equal to

zero for all i > j.

The linear equations from which S is to be determined are

k∑

j=i

tijsjk = δik. (5.8)

Choosing i = k one immediately concludes that

sii = 1/tii. (5.9)

For i < k the equations can then be written in the form

sik = −sii

k∑

j=i+1

tijsjk. (5.10)

11

They can be solved recursively, first setting k = n, then k = n− 1 and so on, while

for each k one starts with i = k − 1 and continues to i = 1. It is not difficult to

see that the element tik may be overwritten by sik in this process, since tik is not

needed at the later stages of the recursion. In other words, the inversion can be

achieved in place without a second array.

5.3 Final steps

Using the orthogonality of the Householder reflections, it is trivial to show that

A−1 = SRn−1Rn−2 . . . R1. (5.11)

The computation can thus be completed by evaluating the product on the right-hand

side of this equation recursively.

6. Programs

The programs that compute the field tensor (2.12),(2.13) and the SW term (4.3) are

contained in the directories modules/tcharge and modules/sw term respectively.

A list of all available functions is included in the README files in these directories,

while the functionality of the programs is briefly described at the top of the program

files.

The programs for the Dirac operator are in the directory modules/dirac. There

are programs implementing the action of D and D̂ on quark fields on the full lattice

and on blocks of lattice points. Most programs admit a further mass parameter µ

and add the twisted-mass term iµγ5 to the Dirac operator. Moreover, it is possible

to restrict the twisted-mass term to the even sites of the lattice by setting a flag (see

modules/flags/lat parms.c).

If boundary conditions of type 3 are chosen, the programs implement periodic

boundary conditions for all fields and switch to anti-periodic boundary conditions for

the quark fields by changing the sign of the link variables U(x, 0) at time x0 = N0−1

before calling any programs for the Dirac operator. The function that changes the

sign of these link variables is chs ubnd() in the module lattice/bcnds.c. When

gauge configurations are written to disk, all link variables are guaranteed to have

the sign-change undone and thus have determinant 1 within rounding errors. Mea-

surement programs based on openQCD modules should therefore call chs ubnd()

immediately after importing a field configuration from disk in order to ensure that

12

type 3 boundary conditions are correctly implemented (see main/ms4.c for exam-

ple).

Appendix A

It is advantageous to work with a chiral representation of the Dirac matrices, where

γµ =

(
0 eµ

(eµ)
† 0

)
. (A.1)

A possible choice for the 2× 2 matrices eµ is

e0 = −1, ek = −iσk (A.2)

(k = 1, 2, 3, and σk are the Pauli matrices). It is then easy to check that

(γµ)
† = γµ, {γµ, γν} = 2δµν . (A.3)

Furthermore, if we define γ5 = γ0γ1γ2γ3, we have

γ5 =

(
1 0

0 −1

)
. (A.4)

In particular, (γ5)
† = γ5 and (γ5)

2 = 1. The hermitian matrices

σµν =
i

2
[γµ, γν] (A.5)

that appear in the SW term are explicitly given by

σ0k =

(
σk 0

0 −σk

)
, σij = −ǫijk

(
σk 0

0 σk

)
, (A.6)

where ǫijk is the totally anti-symmetric tensor with ǫ123 = 1.

The hopping terms in the Wilson–Dirac operator involve the projected spinors

φ = (1− sγµ)ψ, s = ±1. (A.7)

13

In the programs that implement the operator, these terms are hand-programmed,

following the lines

s = +1, µ = 0 :

φ1 = ψ1 + ψ3

φ2 = ψ2 + ψ4

φ3 = φ1

φ4 = φ2 (A.8)

s = −1, µ = 0 :

φ1 = ψ1 − ψ3

φ2 = ψ2 − ψ4

φ3 = −φ1

φ4 = −φ2 (A.9)

s = +1, µ = 1 :

φ1 = ψ1 + iψ4

φ2 = ψ2 + iψ3

φ3 = −iφ2

φ4 = −iφ1 (A.10)

s = −1, µ = 1 :

φ1 = ψ1 − iψ4

φ2 = ψ2 − iψ3

φ3 = iφ2

φ4 = iφ1 (A.11)

s = +1, µ = 2 :

φ1 = ψ1 + ψ4

φ2 = ψ2 − ψ3

14

φ3 = −φ2

φ4 = φ1 (A.12)

s = −1, µ = 2 :

φ1 = ψ1 − ψ4

φ2 = ψ2 + ψ3

φ3 = φ2

φ4 = −φ1 (A.13)

s = +1, µ = 3 :

φ1 = ψ1 + iψ3

φ2 = ψ2 − iψ4

φ3 = −iφ1

φ4 = iφ2 (A.14)

s = −1, µ = 3 :

φ1 = ψ1 − iψ3

φ2 = ψ2 + iψ4

φ3 = iφ1

φ4 = −iφ2 (A.15)

Appendix B

In this appendix, the numerical stability of the matrix inversion algorithm described

in sect. 5 is discussed. For the matrices of interest the inversion requires a relatively

small number of arithmetic operations and the accumulation of rounding errors is

hence not expected to produce an instability. The algorithm is in any case known

to be well behaved in this respect [6,7].

15

A problem may however arise if the matrix is ill-conditioned. Any initial numerical

uncertainty in the matrix may lead to large changes in the calculated inverse in this

case. The result that one obtains is only meaningful up to such variations.

B.1 Condition number

Let A be any complex invertible n× n matrix. In the following the norm ‖v‖ of an

n-component complex vector v is defined through

‖v‖2 =
n∑

k=1

|vk|
2. (B.1)

The associated norm of A and its condition number are then given by

‖A‖ = sup
‖v‖=1

‖Av‖, (B.2)

k(A) = ‖A‖ ‖A−1‖. (B.3)

In terms of the eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λn (B.4)

of the hermitean matrix A†A we have

k(A) =
√
λ1/λn. (B.5)

In particular, matrices with condition numbers near 1 are close to being unitary up

to an overall normalization factor. When the condition number is large the matrix

is said to be ill-conditioned.

If A is hermitean its eigenvalues µ1, . . . , µn may be ordered such that µ2
k = λk

and the condition number k(A) is then equal to |µ1/µn|. It should be emphasized,

however, that the eigenvalues of A are in general not directly related to its condition

number. If we take

A =

(
1 z

0 1

)
, (B.6)

for example, the eigenvalues of A are both equal to 1, while

k(A) = ρ+
√
ρ2 − 1, ρ = 1 + 1

2
|z|2, (B.7)

16

depends on z and can be made arbitrarily large.

B.2 Stability of the linear system Av = b

We now consider the perturbed linear system

(A+ ǫB)v = b, (B.8)

where ǫ is a small parameter and ‖B‖ ≤ ‖A‖. The perturbation ǫB may be regarded

as a model for the numerical uncertainty in A which may have incurred during its

computation. We are then interested in the sensitivity of the solution vector v on

the perturbation. Neglecting higher orders in ǫ, we have

v = (1− ǫA−1B)A−1b, (B.9)

and the relative deviation of the perturbed from the unperturbed solution is hence

bounded by

‖v −A−1b‖

‖A−1b‖
≤ ǫk(A). (B.10)

This suggests that the numerical error on the solution vector may be amplified by a

factor k(A) relative to the error on the matrix A.

In any given case the actual error may be significantly smaller, but the bound

(B.10) is not unrealistic in general. For illustration we again consider the matrix

(B.6) and take

B =

(
0 0

z∗ 0

)
, b =

(
1

0

)
. (B.11)

One easily checks that ‖B‖ ≤ ‖A‖ and a short calculation then yields

‖v −A−1b‖

‖A−1b‖
= ǫ|z|

√
1 + |z|2 (B.12)

up to terms of order ǫ2. For large |z| (large condition numbers in other words) the

inequality (B.10) is hence saturated.

We thus conclude that there can be large significance losses when calculating the

inverse of an ill-conditioned matrix. In particular, the inversion algorithm described

in sect. 5 may not be safe in such cases.

17

B.3 Estimating condition numbers

An exact calculation of the condition number k(A) requires the computation of

the extremal eigenvalues of A†A. This may be rather time-consuming and a faster

method to estimate k(A) is clearly needed.

To this end we introduce the Frobenius norm

‖A‖2F =
n∑

i,j=1

|aij |
2, (B.13)

where aij are the matrix elements of A. Noting

‖A‖2F = tr {A†A} =

n∑

k=1

λk, (B.14)

it is immediately clear that

‖A‖ ≤ ‖A‖F,

and an upper bound on the condition number k(A) is hence given by

k(A) ≤ kF(A) = ‖A‖F ‖A−1‖F. (B.15)

With some additional work one may also establish the inequality

kF(A) ≤
1

2
n [k(A) + 1/k(A)] , (B.16)

which shows that kF(A) overestimates k(A) by at most a factor 1

2
n if k(A) is large

(which is the case of interest).

B.4 Stability criterion

In the program that computes the inverse of Doo, the inversion is considered to be

safe if the 6× 6 matrices A = A±(x) satisfy the bound

kF(A) ≤ kmax = 100. (B.17)

Significance losses of more than 2 decimal places are then excluded and the inverted

matrices are obtained with an estimated numerical precision of at least 14 decimal

places (assuming standard 64 bit floating-point arithmetic). The program returns 1

if the bound is violated and 0 otherwise.

18

A last point to be mentioned here is that the diagonal elements of the triangular

matrix T are bounded from below through

|tii| ≥ ‖A‖F/kmax (B.18)

if (B.17) holds. In particular, the Householder triangularization is guaranteed to be

numerically safe. Equation (B.18) is obtained straightforwardly by inserting

‖A−1‖F = ‖S‖F ≥ |sii| (B.19)

in the definition of kF(A) and using eq. (5.9).

References

[1] M. Lüscher, P. Weisz, U. Wolff, TAO programs for the Dirac operator in O(a)-

improved lattice QCD, ALPHA collaboration internal report (May 1997)

[2] Gauge actions in openQCD simulations, doc/gauge action.pdf

[3] Parameters of the openQCD main programs, doc/parms.pdf

[4] B. Sheikholeslami, R. Wohlert, Improved continuum limit lattice action for QCD

with Wilson fermions, Nucl. Phys. B259 (1985) 572

[5] M. Lüscher, S. Sint, R. Sommer, P. Weisz, Chiral symmetry and O(a) improve-

ment in lattice QCD, Nucl. Phys. B478 (1996) 365

[6] G. W. Stewart, Introduction to Matrix Computations (Academic Press, New

York, 1973).

[7] G. H. Golub, C. F. van Loan, Matrix Computations (Johns Hopkins University

Press, Baltimore, 1989)

19

