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1. Introduction

In O(a)-improved lattice QCD [1,2], the computation of the quark forces that enter

the molecular-dynamics equations is quite complicated. The steps described in this

note are intended to minimize both the computational and the communication effort

required for this calculation.

The notational and normalization conventions used here are the same as the ones

employed in ref. [3]. In particular, the representation of the Dirac matrices specified

in these notes is assumed. The SU(3) conventions are summarized in appendix A.

2. Actions and forces

HMC simulations of QCD [4] now usually involve a frequency splitting of the quark

determinant. As a consequence, there are many contributions to the force that drives

the molecular-dynamics evolution of the link variables U(x, µ) and their momenta

Π(x, µ). Here the case of the twisted-mass frequency splitting proposed by Hasen-

busch [5] is considered, but most formulae obtained in sect. 3 do not depend on this

choice.

2.1 Molecular dynamics

As usual, the momentum field

Π(x, µ) = Π(x, µ)aT a (2.1)
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takes values in the Lie algebra of SU(3) (cf. appendix A). Memory space is allocated

for the momenta on all links (x, µ) of the lattice, but with open boundary conditions

[6], the link variables and their momenta on the time-like links at time x0 = N0 − 1

are not used. In the openQCD package, these field components are set to zero and

remain unchanged in the course of the simulations.

The molecular-dynamics Hamilton function

H(Π, U) = 1
2
(Π, Π) + S(U) (2.2)

consist of the kinetic part

1
2
(Π, Π) = 1

2

∑

x,µ

Π(x, µ)aΠ(x, µ)a (2.3)

and the sum

S(U) = SG(U) + Spf(U), (2.4)

of the gauge action SG(U) and the pseudo-fermion action Spf(U).

The molecular-dynamics evolution of the fields is determined by Hamilton’s equa-

tions

∂tΠ(x, µ) = −T a∂a
x,µS(U), (2.5)

∂tU(x, µ) = Π(x, µ)U(x, µ), (2.6)

where t denotes the molecular-dynamics time and ∂a
x,µ the partial derivatives with

respect to the link variables U(x, µ) (see appendix A).

2.2 Factorization of the quark determinant

Let D be the massive O(a) improved lattice Dirac operator [3] and µ0, . . . , µn a set

of twisted-mass parameters such that

µn > µn−1 > . . . > µ0 ≥ 0. (2.7)

The partition function of a doublet of mass-degenerate quarks may then be factorized

according to

det(D†D + µ2
0) = det(D†D + µ2

n)
n−1∏

k=0

det

{
D†D + µ2

k

D†D + µ2
k+1

}
. (2.8)
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If non-zero, the lowest twisted mass µ0 can serve as infrared regulator [7] or it may

be interpreted as a physical (twisted) mass of the quark doublet.

The pseudo-fermion action corresponding to the factorized quark determinant is

given by

Spf =
n∑

k=0

Spf,k, (2.9)

Spf,k = (φk, (D†D + µ2
k+1)(D

†D + µ2
k)−1φk), k = 0, 1, . . . , n − 1, (2.10)

Spf,n = (φn, (D†D + µ2
n)−1φn), (2.11)

where φ0, . . . , φn are independent pseudo-fermion fields. Introducing the fields

ψk = (D + iµkγ5)
−1γ5φk, (2.12)

χk = (D − iµkγ5)
−1γ5ψk, (2.13)

a little algebra shows that

∂a
x,µSpf,k = −2(µ2

k+1 − µ2
k)Re (χk, γ5∂

a
x,µDψk), k = 0, 1, . . . , n − 1, (2.14)

∂a
x,µSpf,n = −2Re (χn, γ5∂

a
x,µDψn). (2.15)

The quark force deriving from the action Spf,k can thus be calculated by computing

the fields ψk and χk, using a suitable solver for the twisted-mass Dirac equation,

and subsequently the matrix element (2.14) or (2.15) (if k = n).

3. Explicit expressions for the quark forces

The force field

F a(x, µ) = −2Re (χ, γ5∂
a
x,µDψ) (3.1)

is a sum of two terms,

F a
sw(x, µ) = −2Re (χ, γ5∂

a
x,µ(Dee + Doo)ψ), (3.2)
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F a
hop(x, µ) = −2Re (χ, γ5∂

a
x,µ(Deo + Doe)ψ), (3.3)

where Dee, Deo, . . . are the even-even, even-odd, etc., parts of the Dirac operator [3].

These two contributions are quite different and are kept apart in the following.

3.1 X matrices

In both cases, the computation can be divided in roughly two steps, where one first

sums over the Dirac indices and then over the colour indices. More precisely, the

matrices computed in the first step are

Xµν(x) = i

4∑

A=1

{
(γ5σµνψ)A(x) ⊗ χA(x)† + (ψ ↔ χ)

}
, (3.4)

Xµ(x) =
4∑

A=1

{
(γ5(1 − γµ)ψ)A(x + µ̂) ⊗ χA(x)† + (ψ ↔ χ)

}
. (3.5)

The sums in these equations run over the Dirac index of the spinors involved and

the tensor products are taken in colour space, i.e. both Xµν(x) and Xµ(x) are 3× 3

complex matrices in colour space.

With the Dirac matrices chosen as in appendix A of ref. [3], the matrices Xµν are

given by

X01(x) = i
{
M12 + M21 + M34 + M43

}
, (3.6)

X02(x) = i
{
i(M12 − M21) + i(M34 − M43)

}
, (3.7)

X03(x) = i
{
M11 − M22 + M33 − M44

}
, (3.8)

X23(x) = i
{
−M12 − M21 + M34 + M43

}
, (3.9)

X31(x) = i
{
−i(M12 − M21) + i(M34 − M43)

}
, (3.10)

X12(x) = i
{
−M11 + M22 + M33 − M44

}
, (3.11)

where

MAB = ψA(x) ⊗ χB(x)† + χA(x) ⊗ ψB(x)†. (3.12)
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Fig. 1. Graphical representation of the products of gauge field variables contributing

to the lattice field strength tensor (3.19). Each square corresponds to one of the terms

in eq. (3.20).

Note that only the hermitian 6 × 6 matrices

(
M11 M12

M21 M22

)
and

(
M33 M34

M43 M44

)
(3.13)

need to be computed to be able to evaluate eqs. (3.6)–(3.11).

In the case of the other matrices, Xµ(x), the explicit expressions are

X0(x) = (ψ1 + ψ3)(x + µ̂) ⊗ (χ1 − χ3)(x)†+

(ψ2 + ψ4)(x + µ̂) ⊗ (χ2 − χ4)(x)† + (ψ ↔ χ), (3.14)

X1(x) = (ψ1 + iψ4)(x + µ̂) ⊗ (χ1 − iχ4)(x)†+

(ψ2 + iψ3)(x + µ̂) ⊗ (χ2 − iχ3)(x)† + (ψ ↔ χ), (3.15)

X2(x) = (ψ1 + ψ4)(x + µ̂) ⊗ (χ1 − χ4)(x)†+

(ψ2 − ψ3)(x + µ̂) ⊗ (χ2 + χ3)(x)† + (ψ ↔ χ), (3.16)

X3(x) = (ψ1 + iψ3)(x + µ̂) ⊗ (χ1 − iχ3)(x)†+

(ψ2 − iψ4)(x + µ̂) ⊗ (χ2 + iχ4)(x)† + (ψ ↔ χ). (3.17)

Contrary to the tensor matrices (which are antihermitian), these matrices are generic

complex 3 × 3 matrices.
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3.2 SW part of the force

The diagonal part of the Dirac operator,

Dee + Doo = constant + csw

3∑

µ,ν=0

i
4
σµνF̂µν , (3.18)

involves the field tensor

F̂µν(x) = 1
8
{Qµν(x) − Qνµ(x)} , (3.19)

Qµν(x) = U(x, µ)U(x + µ̂, ν)U(x + ν̂, µ)−1U(x, ν)−1+

U(x, ν)U(x − µ̂ + ν̂, µ)−1U(x − µ̂, ν)−1U(x − µ̂, µ)+

U(x − µ̂, µ)−1U(x − µ̂ − ν̂, ν)−1U(x − µ̂ − ν̂, µ)U(x − ν̂, ν)+

U(x − ν̂, ν)−1U(x − ν̂, µ)U(x + µ̂ − ν̂, ν)U(x, µ)−1 (3.20)

(see fig. 1). The force (3.2) is thus given by

F a
sw(x, µ) = ∂a

x,µSsw, (3.21)

where

Ssw = − 1
8
csw

∑

y

∑

ρ<σ

Re tr{Qρσ(y)Xρσ(y)}. (3.22)

After substituting eq. (3.20), the “action” Ssw is seen to be a sum of plaquette terms.

There are four terms per plaquette, one for each point where the X matrix can be.

The SW force field may thus be computed by running through all plaquettes and

adding the associated contributions to the force field. In order to write down these

contributions explicitly, it is helpful to introduce some notation. Suppose the current

plaquette is in the (ρ, σ)-plane at the point y. The link variables and X matrices

residing on that plaquette are

u0 = U(y, ρ), (3.23)

u1 = U(y + ρ̂, σ), (3.24)

u2 = U(y, σ), (3.25)

u3 = U(y + σ̂, ρ), (3.26)
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Fig. 2. Labeling of the link variables [eqs. (3.23)–(3.26)] and X matrices [eqs. (3.27)–

(3.30)] along a plaquette in the (ρ, σ)-plane.

and

z0 = Xρσ(y), (3.27)

z1 = Xρσ(y + ρ̂), (3.28)

z2 = Xρσ(y + σ̂), (3.29)

z3 = Xρσ(y + ρ̂ + σ̂) (3.30)

(see fig. 2). Using these abbreviations, the contribution of the plaquette to Ssw is

given by

− 1
8
csw Re tr{z0u0u1u

†
3u

†
2 + u0z1u1u

†
3u

†
2 + u0u1z3u

†
3u

†
2 + u0u1u

†
3z2u

†
2}. (3.31)

Differentiation of this term with respect to u0, u1, u2 and u3 leads to contributions

f0, f1, f2 and f3 to the force on the links (x, µ) = (y, ρ), (y+ρ̂, σ), (y, σ) and (y+σ̂, ρ),

respectively.

If the first product in eq. (3.31) is differentiated with respect to u0, for example,

one obtains a contribution to T aF a
sw(y, ρ) of the form

− 1
8
cswT a Re tr{T au0u1u

†
3u

†
2z0} = 1

16
cswP{u0u1u

†
3u

†
2z0}, (3.32)

where

P{m} = 1
2
(m − m†) − 1

6
tr(m − m†) (3.33)

projects any complex 3×3 matrix m to su(3). The product on the right of eq. (3.32)

is graphically represented by the top-left diagram shown in fig. 3. Similarly, one

obtains 15 further terms that correspond to the other diagrams in the figure.
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Fig. 3. Products of the link variables and X matrices around the plaquettes in the

(ρ, σ)-plane, which need to computed in order to evaluate the SW force. The products

in columns 1–4 contribute to f0, f1, f3 and f4, respectively.

The associated products of 3 × 3 matrices may be efficiently calculated by first

computing

w0 = u
†
2u0, (3.34)

w1 = u1u
†
3, (3.35)

w2 = u
†
2z0u0, (3.36)

w3 = z2w0, (3.37)

w4 = u1z3u
†
3, (3.38)

w5 = w0z1. (3.39)

After that one can calculate the su(3) matrices

y0 = P{w1w2}, (3.40)
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y1 = P{w2w1}, (3.41)

y2 = P{w1w3}, (3.42)

y3 = P{w3w1}, (3.43)

y4 = P{w4w0}, (3.44)

y5 = P{w0w4}, (3.45)

y6 = P{w1w5}, (3.46)

y7 = P{w5w1}, (3.47)

and finally the contributions to the force

f0 = 1
16

csw{u0(y0 + y2 + y4)u
†
0 + u2y7u

†
2}, (3.48)

f1 = 1
16

csw{y0 + y2 + y4 + y6}, (3.49)

f2 = − 1
16

csw{u2(y1 + y5 + y7)u
†
2 + u0y2u

†
0}, (3.50)

f3 = − 1
16

csw{y1 + y3 + y5 + y7}. (3.51)

In total these are 16 matrix products and 4 rotations in su(3) per plaquette.

3.3 Hopping part of the force

A short calculation shows that

F a
hop(x, µ) =

3∑

µ=0

Re
{
χ(x)†T aU(x, µ)γ5(1 − γµ)ψ(x + µ̂) + (ψ ↔ χ)

}
. (3.52)

Recalling the definition (3.5), this leads to the expression

T aF a
hop(x, µ) = −1

2
P{U(x, µ)Xµ(x)}. (3.53)

The hopping part of the force is thus very much easier to evaluate than the SW

part.
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4. Even-odd preconditioned fermion action

If the twisted-mass terms are introduced merely for technical reasons, one has the

option of adding them on the even sites of the lattice only. This choice has some

advantages when even-odd preconditioning is used and is therefore made in this

section.

4.1 Factorization formula

Let 1e be the projector to the subspace of quark fields that vanish on the odd sites

of the lattice. Its action on any fermion field ψ(x) is given by

1eψ(x) =

{
ψ(x) if x is even,

0 if x is odd.
(4.1)

The Dirac equation with a twisted mass on the even sites,

(D + iµγ51e)ψ(x) = η(x), (4.2)

can be solved by solving the even-odd preconditioned system

(D̂ + iµγ5)ψe = ηe − DeoD
−1
oo ηo (4.3)

and by setting

ψo = D−1
oo {ηo − Doeψe}, (4.4)

where D̂ denotes the even-odd preconditioned Dirac operator [3].

With such twisted-mass terms, the factorization formula replacing eq. (2.8) reads

det{(D†− iµ0γ51e)(D + iµ0γ51e)}

= (detDoo)
2 det(D̂†D̂ + µ2

n)
n−1∏

k=0

det

{
D̂†D̂ + µ2

k

D̂†D̂ + µ2
k+1

}
. (4.5)

The formula shows that a proper frequency splitting of the quark determinant can

be achieved in this way too. A notable difference with respect to the case previously

discussed is, however, the presence of the “small determinant” detDoo on the right

of eq. (4.5), which is rapidly varying with the gauge field and thus belongs to the

high-frequency part of the determinant.
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4.2 Pseudo-fermion actions and forces

The pseudo-fermion action corresponding to the factorized quark determinant (4.5)

is given by

Spf =
n∑

k=0

Ŝpf,k, (4.6)

Ŝpf,k = (φk,e, (D̂
†D̂ + µ2

k+1)(D̂
†D̂ + µ2

k)−1φk,e), k = 0, 1, . . . , n − 1, (4.7)

Ŝpf,n = (φn,e, (D̂
†D̂ + µ2

n)−1φn,e), (4.8)

where φ0,e, . . . , φn,e are independent pseudo-fermion fields that vanish on the odd

sites of the lattice. Introducing the (full lattice) fields

ψk = (D + iµkγ51e)
−1γ5φk,e, (4.9)

χk = (D − iµkγ51e)
−1γ51eψk, (4.10)

a little algebra shows that

∂a
x,µŜpf,k = −2(µ2

k+1 − µ2
k)Re (χk, γ5∂

a
x,µDψk), k = 0, 1, . . . , n − 1, (4.11)

∂a
x,µŜpf,n = −2Re (χn, γ5∂

a
x,µDψn). (4.12)

The forces deriving from the actions Ŝpf,k can thus be computed using the generic

formulae derived in sect. 3. Note that the pseudo-fermion actions

Ŝpf,k = (φk, φk) + (µ2
k+1 − µ2

k)(ψk, 1eψk), k = 0, 1, . . . , n − 1, (4.13)

Ŝpf,n = (ψn, 1eψn), (4.14)

are easily obtained once the fields ψk are known.

The fields ψk and χk may alternatively be calculated through

χk,e = (D̂†D̂ + µ2
k)−1φk,e, (4.15)

χk,o = −D−1
oo Doeχk,e, (4.16)

ψk,e = γ5(D̂ − iµkγ5)χk,e, (4.17)

11



ψk,o = −D−1
oo Doeψk,e. (4.18)

This is the preferred scheme if the Dirac equation is to be solved with the conjugate

gradient algorithm. Equations (4.9) and (4.10) may however be better suited if other

solvers are used.

4.3 Force deriving from the “small determinant”

The first factor in eq. (4.5) corresponds to the action

Sdet = −2Tr ln(1e + Doo) = −2
∑

x odd

tr lnM(x) (4.19)

in the molecular-dynamics Hamilton function, where

M(x) =

(
A+(x) 0

0 A−(x)

)
(4.20)

is the matrix in spinor space representing the action of Dee + Doo at the point x

(see subsect. 4.2 in ref. [3]). The hermitian 6 × 6 blocks A±(x) in eq. (4.20) act on

the upper and lower two Dirac components of the quark fields, respectively. They

are of the form

A+ =

(
A11 A12

A21 A22

)
, A− =

(
A33 A34

A43 A44

)
, (4.21)

where Aij is a complex 3 × 3 colour matrix that acts on the j’th Dirac component

of the quark spinors.

The force deriving from the action Sdet involves the inverse of M(x), which may

be similarly decomposed,

A−1
+ =

(
B11 B12

B21 B22

)
, A−1

− =

(
B33 B34

B43 B44

)
, (4.22)

into 3×3 colour matrices Bij . As in the case of the force F a
sw(x, µ), it is now helpful

to introduce the X matrices

Xµν(x) = i

4∑

A=1

{σµνM(x)−1}AA. (4.23)
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Explicitly,

X01(x) = i
{
B12 + B21 − B34 − B43

}
, (4.24)

X02(x) = i
{
i(B12 − B21) − i(B34 − B43)

}
, (4.25)

X03(x) = i
{
B11 − B22 − B33 + B44

}
, (4.26)

X23(x) = i
{
−B12 − B21 − B34 − B43

}
, (4.27)

X31(x) = i
{
−i(B12 − B21) − i(B34 − B43)

}
, (4.28)

X12(x) = i
{
−B11 + B22 − B33 + B44

}
. (4.29)

Note that Xµν(x) vanishes at time x0 = 0 and x0 = N0 − 1, since M(x) is equal to

the unit matrix at these points [3]. The force is then given by

F a
det(x, µ) = ∂a

x,µSdet = − 1
4
csw

∑

y odd

∑

ρ<σ

Re tr{[∂a
x,µQρσ(y)]Xρσ(y)}. (4.30)

Apart from a factor 2, this formula coincides with the one obtained in sect. 3 for the

force F a
sw(x, µ) (cf. eqs. (3.21),(3.22); the sum over y can be extended to all points

by setting the X tensor field to zero on the even points).

5. Programs

The programs that compute the gauge and quark forces are contained in the direc-

tory modules/forces. A list of all available functions is included in the README file

in this directory, while the functionality of the programs is briefly described at the

top of the program files.
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Appendix A

The Lie algebra su(N) of SU(N) may be identified with the linear space of all anti-

hermitian traceless N ×N matrices. With respect to a basis T a, a = 1, . . . , N2 − 1,

of such matrices, the elements X ∈ su(N) are given by X = XaT a with real compo-

nents Xa (repeated group indices are automatically summed over). The structure

constants fabc in the commutator relation

[T a, T b] = fabcT c (A.1)

are real and totally anti-symmetric in the indices if the normalization condition

tr{T aT b} = − 1
2
δab (A.2)

is imposed. Moreover, facdf bcd = Nδab.

If F(U) is a differentiable function of the gauge field, its derivative with respect

to the link variable U(x, µ) in the direction of the generator T a is defined by

∂a
x,µF(U) =

d

dt
F(Ut)

∣∣∣∣
t=0

, Ut(y, ν) =

{
etT a

U(x, µ) if (y, ν) = (x, µ),

U(y, ν) otherwise.
(A.3)

In particular, in the case of a scalar function F(U), the combination T a∂a
x,µF(U) is

a vector field with values in su(3) that transforms under the adjoint representation

of the gauge group.
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