
Algorithms used in ranlux v3.0

Martin Lüscher May 2001

Introduction

In its original form the ranlux generator [1–4] delivers uniformly distributed random

numbers in the range

x/224, x = 0, 1, 2, . . . , 224 − 1. (1)

On computers complying with the IEEE-754 standard, this set of numbers may be

represented through single-precision floating point numbers. It is then straightfor-

ward to write a program for the generator that implements the underlying algorithm

exactly. Since one does not refer to any special properties of the hardware other than

those covered by the IEEE-754 standard, a high level of portability is thus achieved.

The generator can also be cast in another mathematically equivalent form that

yields uniformly distributed random numbers in the range

x/248, x = 0, 1, 2, . . . , 248 − 1. (2)

These can be exactly represented by IEEE-754 double-precision numbers, although

in this case not all bits of the fractional part are assigned a random value (the 5

least significant bits are set to 0). It is then up to the user to decide whether single-

or double-precision random numbers should be produced.

While the ranlux generator has provably good statistical properties, it tends to

be rather slow. Modern PC processors have extended capabilities that allow several

floating point numbers to be processed at once. The version of ranlux described in

this note takes advantage of some of these features and achieves significantly higher

production rates on these machines than previous versions of the program.

1



Basic algorithm

In the following lines the algorithm underlying the ranlux generator is briefly de-

scribed. For further details and a theoretical discussion of the generator the reader

should consult ref. [1].

Let X be the set of integers x in the range 0 ≤ x < b, where b is an integer

greater than 1, referred to as the base, that will be specified later. The algorithm

generates a sequence x0, x1, x2, . . . of elements of X recursively, together with a

sequence c0, c1, c2, . . . of “carry bits”. The latter take values 0 or 1 and are used

internally, i.e. the interesting output of the algorithm are the numbers xn, or rather

xn/b if one requires random numbers uniformly distributed between 0 and 1.

The recursion involves two fixed lags, r and s, satisfying r > s ≥ 1. For n ≥ r

one first computes the difference

∆n = xn−s − xn−r − cn−1, (3)

and then determines xn and cn through

xn = ∆n, cn = 0 if ∆n ≥ 0,

xn = ∆n + b, cn = 1 if ∆n < 0. (4)

To start the recursion, the first r values x0, x1, . . . , xr−1 together with an initial

carry bit cr−1 must be provided. The configurations

x0 = x1 = . . . = xr−1 = 0, cr−1 = 0, (5)

x0 = x1 = . . . = xr−1 = b − 1, cr−1 = 1, (6)

should be avoided, because the algorithm yields uninteresting sequences of numbers

in these cases. All other choices of initial values are admissible.

For the ranlux generator one sets

b = 224, r = 24, s = 10, (7)

and uses only a fraction r/p of the numbers generated by the algorithm. As explained

in ref. [1], the residual statistical correlations in the resulting sequence of random

numbers are exponentially decreasing when p is increased. The published Fortran

program for the generator [2] offers several choices of p, referred to as “luxury levels”,

because the computer time required to generate new random numbers is proportional

to p, and large values of p are thus a luxury.

2



Double-word algorithm

We may now introduce a new sequence of integers through

x̃n = x2n + x2n+1b, n = 0, 1, 2, . . . (8)

Since x2n is non-negative and less than b, it is clear that

x2n = x̃n mod b, x2n+1 = (x̃n − x2n)/b, (9)

i.e. there is a one-to-one relation between the old and new sequence of numbers.

When written as a binary number, x̃n has at most 48 non-zero digits and so may

be exactly represented as a double-precision floating point number on any computer

complying with the IEEE-754 standard for this data format.

If we define an associated sequence of carry bits,

c̃n = c2n+1, (10)

it is straightforward to prove that the recursion

x̃n = ∆̃n, c̃n = 0 if ∆̃n ≥ 0,

x̃n = ∆̃n + b2, c̃n = 1 if ∆̃n < 0, (11)

holds, where the difference ∆̃n is given by

∆̃n = x̃n−s/2 − x̃n−r/2 − c̃n−1. (12)

Evidently this is the same algorithm as above, with base b2 and lags r/2 and s/2.

We may, therefore, consider ranlux to be a generator that yields random numbers

with either 24 or 48 random bits.

3



Fig. 1. Average distance δ(t) between neighbouring trajectories as a function of the

evolution time t. Open and full circles refer to the single- and double-word algorithm

respectively.

Luxury levels

As discussed in ref. [1] the ranlux generator is related to a classical dynamical sys-

tem that can be proved to be chaotic in a strong sense. In particular, any initial

correlations between different states of the generator decrease exponentially as the

system evolves. The dynamical system associated with the double-word algorithm

belongs to the same category and has the same Liapunov exponent. This can be

shown analytically, but is also evident from numerical experiments, where the dis-

tance between neighbouring trajectories of the system is measured as a function of

time (see Figure 1; the setup is as in sect. 4.1 of ref. [1]).

Vectors of r subsequent elements of the generated sequence of random numbers,

separated by p − r discarded elements, may thus be expected to be decorrelated if

p is large enough. In the language of the underlying dynamical system, the time

separation of these vectors is equal to p/r. So if we choose p to be equal to 218, 404

and 794, for example, a reduction of any initial correlations by approximately 4, 7

4



Table 1. Luxury levels and merits µD of the associated linear congruential generators

level p µ2 µ3 µ4 µ5 µ6 µ7 µ8

0 218 1.86 1.73 2.75 1.00 0.94 3.77 3.66

1 404 2.54 1.93 0.87 1.34 5.12 1.12 2.26

2 794 1.15 1.63 0.96 1.65 1.07 2.33 0.48

and 14 orders of magnitude is achieved (cf. Figure 1). These particular values of p

also fare well in the spectral test, which probes for correlations among D-tuples of

vectors over the whole period of the generator. The results of the test are listed in

Table 1 together with the recommended assignment of luxury levels †.

All values of p suggested here are even, because odd p’s would be inconvenient

for the double-word algorithm. In the latter case one keeps the first r/2 numbers,

discards the next (p − r)/2 numbers, uses the following r/2 numbers, and so on.

This rule matches exactly with the prescription for the basic algorithm.

Integer implementation

Some time ago Hamilton and James [3] pointed out that it is profitable on PC

processors to use integer arithmetic for the basic algorithm. The calculated numbers

may then be converted to floating point format on output. A potential problem with

any such program is that eq. (4) involves a conditional branch that interrupts the

processing pipeline half of the time.

It is possible to avoid this completely in the following way. First introduce the

constants

#define BASE 0x1000000

#define MASK 0xffffff

that are equal to 224 and 224 − 1 respectively. The code

delta=x[n-s]-x[n-r]-c[n-1];

c[n]=(delta<0);

† Note that the level assignment is different from the one in the published Fortran program [2].

The levels 0 and 1 roughly correspond to level 3 and 4 there.

5



delta+=BASE;

x[n]=(delta&MASK);

then implements the recursion (4) correctly without generating branch instructions.

Note that these lines are ISO C compliant and should thus produce the right result

on any modern computer.

Using SSE registers

The recent Intel Pentium processors have an additional set of registers for vectors of 4

single-precision floating point numbers. There is a corresponding set of instructions

(referred to as Streaming SIMD Extension) that allows them to be manipulated in

various ways. In particular, the registers can be added and multiplied.

Efficient use of these capabilities can be made when 4 copies of the ranlux gener-

ator, with different initial data, are run in parallel. Here too it is possible to avoid

branches in the program without increasing the number of code lines significantly.

Programs that use the SSE registers are necessarily system and compiler specific.

Portability is thus lost, but this deficit is to be balanced against the fact that speed-

up factors of 2 or so can be achieved in this way with little effort.

Programs

In ref. [5] a set of C programs is described that implement the algorithms discussed

above. There are two main subroutines, ranlxs and ranlxd, that deliver single-

and double-precision random numbers respectively. In the first case the user can

choose any of the luxury levels listed in Table 1, with 0 being the default level.

For the double-precision routine only the two higher levels are admitted in order

to guarantee that also the lower bits are decorrelated (it would otherwise not make

much sense to generate double-precision random numbers). The initialization of the

generators requires some care and is discussed in appendix A.

Whether use is to be made of the SSE registers or not can be controlled at compile

time through the macro SSE. If SSE is not defined, the code that is being compiled

is ISO C compliant. Portability is thus preserved. Otherwise the code contains SSE

instructions, but will produce exactly the same random numbers on machines that

support these (cf. ref. [5]).

6



Appendix A

To initialize the basic algorithm the first 24 numbers x0, x1, . . . , x23 and the carry

bit c23 need to be specified. If we set the latter to zero for simplicity and write

the initial values in binary form, the total number of bits that must be provided is

576. In the version of ranlxs and ranlxd discussed here, the bits are taken from a

random sequence (bn)n≥0 that is generated recursively through

bn = (bn−13 + bn−31) mod 2. (13)

To start the recursion 31 initial bits are required which may conveniently be taken

to be the binary digits of an integer seed between 1 and 231 − 1.

As discussed in sect. 3.2.2 of ref. [6], the period of the bit sequence generated

through eq. (13) is equal to 231 − 1. It is then easy to show that different seeds

give different initial vectors. We actually need 4 vectors of initial values since the

programs run 4 copies of the generator in parallel. To ensure that all these are

initialized differently, the reversed bits are used for the initial values x4l+i of the

generator number i.

Internally the double-precision program ranlxd runs the basic algorithm too and

combines pairs of successive numbers on output according to eq. (8). In this case

the initialization program reverses the bits of all initial values xk except for the

values x4l+i. So even if the single- and double precision programs are used in the

same main program, all initial vectors for the basic algorithm are guaranteed to be

different.

References

[1] M. Lüscher, A portable high-quality random number generator for lattice field

theory simulations, Comp. Phys. Comm. 79 (1994) 100

[2] F. James, ranlux: a Fortran implementation of the high-quality pseudo-random

number generator of Lüscher, Comp. Phys. Comm. 79 (1994) 111 [E: ibid. 97

(1996) 357]

[3] K. G. Hamilton and F. James, Acceleration of ranlux, Comp. Phys. Comm. 101

(1997) 241

[4] K. G. Hamilton, Assembler ranlux for PCs, Comp. Phys. Comm. 101 (1997) 249

[5] M. Lüscher, User’s guide for ranlxs and ranlxd v3.0 (May 2001)

[6] D. E. Knuth, Semi-Numerical Algorithms, in: The Art of Computer Program-

ming, vol. 2, 2nd ed. (Addison-Wesley, Reading MA, 1981)

7


