

Page 1 of 3 UEABS 27/02/2020

NEMO

Cevdet Aykanat and Ozan Karsavuran – 26/02/2020

Summary Version

v0.1

Purpose of Benchmark

NEMO (Nucleus for European Modelling of the Ocean) is a mathematical modelling framework for

research activities and prediction services in ocean and climate sciences developed by a European

consortium. It is intended to be a tool for studying the ocean and its interaction with the other

components of the earth climate system over a large number of space and time scales. It comprises

of the core engines namely OPA (ocean dynamics and thermodynamics), SI3 (sea ice dynamics and

thermodynamics), TOP (oceanic tracers) and PISCES (biogeochemical process).

Prognostic variables in NEMO are the three-dimensional velocity field, a linear or non-linear sea

surface height, the temperature and the salinity. In the horizontal direction, the model uses a

curvilinear orthogonal grid and in the vertical direction, a full or partial step z-coordinate, or s-

coordinate, or a mixture of the two. The distribution of variables is a three-dimensional Arakawa C-

type grid for most of the cases.

Characteristics of Benchmark

The model is implemented in Fortran 90, with pre-processing (C-pre-processor). It is optimized for

vector computers and parallelized by domain decomposition with MPI. It supports modern C/C++ and

FORTRAN compilers. All input and output is done with third party software called XIOS with a

dependency on NetCDF (Network Common Data Format) and HDF5. It is highly scalable and a

perfect application for measuring supercomputing performances in terms of compute capacity,

memory subsystem, I/O and interconnect performance.

Mechanics of Building Benchmark

Building XIOS

1. Download the XIOS source code

svn co https://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/branchs/xios-2.5

2. There are available known architectures which can be seen with the following command:
./make_xios –avail

If target architecture is a known one, it can be built by the following command
./make_xios --arch X64_CURIE
Otherwise arch-local.env, arch-local.fcm, arch-local.path files should be placed according to

target architecture. Then build by:
./make_xios --arch local

Page 2 of 3 UEABS 27/02/2020

Note that XIOS requires Netcdf4. Please load the appropriate HDF5 and NetCDF4 modules. You

might have to change the path in the configuration file.

Building NEMO

1. Download the XIOS source code

svn co https://forge.ipsl.jussieu.fr/nemo/svn/NEMO/releases/release-4.0

2. Copy and setup the appropriate architecture file in the arch folder. The following changes are

recommended:

a. add the -lnetcdff and -lstdc++ flags to NetCDF flags

b. using mpif90 which is a MPI binding of gfortran-4.9

c. add -cpp and -ffree-line-length-none to Fortran flags

d. swap out gmake with make

3. Then build the executable with the following command

./makenemo -m MY_CONFIG -r GYRE_XIOS -n MY_GYRE add_key "key_nosignedzero"

4. Apply the patch as described here to measure step time :
https://software.intel.com/en-us/articles/building-and-running-nemo-on-xeon-processors

Mechanics of Running Benchmark

Prepare input files

cd MY_GYRE/EXP00
sed -i '/using_server/s/false/true/' iodef.xml
sed -i '/&nameos/a ln_useCT = .false.' namelist_cfg
sed -i '/&namctl/a nn_bench = 1' namelist_cfg

Run the experiment interactively

mpirun -n 4 ../BLD/bin/nemo.exe -n 2 $PATH_TO_XIOS/bin/xios_server.exe

GYRE configuration with higher resolution

Modify configuration (for example for the test case A):

rm -f time.step solver.stat output.namelist.dyn ocean.output slurm-* GYRE_* mesh_mask_00*
jp_cfg=4
sed -i -r \
 -e 's/^(*nn_itend *=).*/\1 21600/' \
 -e 's/^(*nn_stock *=).*/\1 21600/' \
 -e 's/^(*nn_write *=).*/\1 1000/' \
 -e 's/^(*jp_cfg *=).*/\1 '"$jp_cfg"'/' \
 -e 's/^(*jpidta *=).*/\1 '"$((30 * jp_cfg +2))"'/' \
 -e 's/^(*jpjdta *=).*/\1 '"$((20 * jp_cfg +2))"'/' \
 -e 's/^(*jpiglo *=).*/\1 '"$((30 * jp_cfg +2))"'/' \
 -e 's/^(*jpjglo *=).*/\1 '"$((20 * jp_cfg +2))"'/' \
 namelist_cfg

Verification of Results

The GYRE configuration is set through the namelist_cfg file. The horizontal resolution is determined

by setting jp_cfg as follows:

https://software.intel.com/en-us/articles/building-and-running-nemo-on-xeon-processors

Page 3 of 3 UEABS 27/02/2020

 Jpiglo = 30 × jp_cfg + 2

 Jpjglo = 20 × jp_cfg + 2

In this configuration, we use a default value of 30 ocean levels, depicted by jpk=31. The GYRE

configuration is an ideal case for benchmark tests as it is very simple to increase the resolution and

perform both weak and strong scalability experiment using the same input files. We use two

configurations as follows:

Test Case A:

• jp_cfg = 128 suitable up to 1000 cores

• Number of Days: 20

• Number of Time steps: 1440

• Time step size: 20 mins

• Number of seconds per time step: 1200

Test Case B:

• jp_cfg = 256 suitable up to 20,000 cores.

• Number of Days (real): 80

• Number of time step: 4320

• Time step size(real): 20 mins

• Number of seconds per time step: 1200

We performed scalability test on 512 cores and 1024 cores for test case A. We performed scalability

test for 4096 cores, 8192 cores and 16384 cores for test case B.

Both these test cases can give us quite good understanding of node performance and interconnect

behavior. We switch off the generation of mesh files by setting the flag nn_mesh = 0 in the namelist_ref
file. Also using_server = false is defined in io_server file.

We report the performance in step time which is the total computational time averaged over the

number of time steps for different test cases. This helps us to compare systems in a standard manner

across all combinations of system architectures. The other main reason for reporting time per

computational time step is to make sure that results are more reproducible and comparable.

Since NEMO supports both weak and strong scalability, test case A and test case B both can be

scaled down to run on smaller number of processors while keeping the memory per processor

constant achieving similar results for step time. To measure the step time, we inserted a patch which

includes the MPI_wtime() functional call in nemogcn.f90 file for each step which also cumulatively adds

the step time until the second last step. We then divide the total cumulative time by the number of

time steps to average out any overhead.

Sources

https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/NEMO/guide/html/install.html

https://forge.ipsl.jussieu.fr/ioserver/wiki/documentation

https://nemo-related.readthedocs.io/en/latest/compilation_notes/nemo37.html

