Skip to content
Commits on Source (2)
......@@ -45,11 +45,11 @@ The application codes that constitute the UEABS are:
The Alya System is a Computational Mechanics code capable of solving different physics, each one with its own modelization characteristics, in a coupled way. Among the problems it solves are: convection-diffusion reactions, incompressible flows, compressible flows, turbulence, bi-phasic flows and free surface, excitable media, acoustics, thermal flow, quantum mechanics (DFT) and solid mechanics (large strain). ALYA is written in Fortran 90/95 and parallelized using MPI and OpenMP.
- Web site: https://www.bsc.es/computer-applications/alya-system
- Code download: https://repository.prace-ri.eu/ueabs/ALYA/1.1/alya3226.tar.gz
- Build instructions: https://repository.prace-ri.eu/git/UEABS/ueabs/blob/r1.3/alya/ALYA_Build_README.txt
- Test Case A: https://repository.prace-ri.eu/ueabs/ALYA/1.3/ALYA_TestCaseA.tar.bz2
- Test Case B: https://repository.prace-ri.eu/ueabs/ALYA/1.3/ALYA_TestCaseB.tar.bz2
- Run instructions: https://repository.prace-ri.eu/git/UEABS/ueabs/blob/r1.3/alya/ALYA_Run_README.txt
- Code download: https://repository.prace-ri.eu/ueabs/ALYA/2.1/Alya.tar.gz
- Build instructions: https://repository.prace-ri.eu/git/UEABS/ueabs/blob/r2.1/alya/ALYA_Build_README.txt
- Test Case A: https://repository.prace-ri.eu/ueabs/ALYA/2.1/TestCaseA.tar.gz
- Test Case B: https://repository.prace-ri.eu/ueabs/ALYA/2.1/TestCaseB.tar.gz
- Run instructions: https://repository.prace-ri.eu/git/UEABS/ueabs/blob/r2.1/alya/ALYA_Run_README.txt
# Code_Saturne <a name="saturne"></a>
......
In order to build ALYA (Alya.x), please follow these steps:
Alya builds the makefile from the compilation options defined in config.in. In order to build ALYA (Alya.x), please follow these steps:
- Go to the directory: Executables/unix
- Build the Metis library (libmetis.a) using "make metis4"
- Adapt the file: configure.in to your own MPI wrappers and paths (examples on the configure.in folder)
- Execute:
./configure -x nastin parall
make
- Goto to directory: Executables/unix
- Edit config.in (some default config.in files can be found in directory configure.in):
- Select your own MPI wrappers and paths
- Select size of integers. Default is 4 bytes, For 8 bytes, select -DI8
- Choose your metis version, metis-4.0 or metis-5.1.0_i8 for 8-bytes integers
- Configure Alya: ./configure -x nastin parall
- Compile metis: make metis4 or make metis5
- Compile Alya: make
Data sets
---------
The parameters used in the datasets try to represent at best typical industrial runs in order to obtain representative speedups. For example, the iterative solvers are never converged to machine accuracy, but only as a percentage of the initial residual.
The different datasets are:
SPHERE_16.7M ... 16.7M sphere mesh
SPHERE_132M .... 132M sphere mesh
How to execute Alya with a given dataset
----------------------------------------
In order to run ALYA, you need at least the following input files per execution:
X.dom.dat
X.ker.dat
X.nsi.dat
X.dat
In our case X=sphere
To execute a simulation, you must be inside the input directory and you should submit a job like:
mpirun Alya.x sphere
How to measure the speedup
--------------------------
There are many ways to compute the scalability of Nastin module.
1. For the complete cycle including: element assembly + boundary assembly + subgrid scale assembly + solvers, etc.
2. For single kernels: element assembly, boundary assembly, subgrid scale assembly, solvers
3. Using overall times
1. In *.nsi.cvg file, column "30. Elapsed CPU time"
2. Single kernels. Here, average and maximum times are indicated in *.nsi.cvg at each iteration of each time step:
Element assembly: 19. Ass. ave cpu time 20. Ass. max cpu time
Boundary assembly: 33. Bou. ave cpu time 34. Bou. max cpu time
Subgrid scale assembly: 31. SGS ave cpu time 32. SGS max cpu time
Iterative solvers: 21. Sol. ave cpu time 22. Sol. max cpu time
Data sets
---------
The parameters used in the datasets try to represent at best typical industrial runs in order to obtain representative speedups. For example, the iterative solvers are never converged to machine accuracy, but only as a percentage of the initial residual.
The different datasets are:
SPHERE_16.7M ... 16.7M sphere mesh
SPHERE_132M .... 132M sphere mesh
How to execute Alya with a given dataset
----------------------------------------
In order to run ALYA, you need at least the following input files per execution:
X.dom.dat
X.ker.dat
X.nsi.dat
X.dat
In our case X=sphere
To execute a simulation, you must be inside the input directory and you should submit a job like:
mpirun Alya.x sphere
How to measure the speedup
--------------------------
There are many ways to compute the scalability of Nastin module.
1. For the complete cycle including: element assembly + boundary assembly + subgrid scale assembly + solvers, etc.
2. For single kernels: element assembly, boundary assembly, subgrid scale assembly, solvers
3. Using overall times
1. In *.nsi.cvg file, column "30. Elapsed CPU time"
2. Single kernels. Here, average and maximum times are indicated in *.nsi.cvg at each iteration of each time step:
Element assembly: 19. Ass. ave cpu time 20. Ass. max cpu time
Boundary assembly: 33. Bou. ave cpu time 34. Bou. max cpu time
Subgrid scale assembly: 31. SGS ave cpu time 32. SGS max cpu time
Iterative solvers: 21. Sol. ave cpu time 22. Sol. max cpu time
Note that in the case of using Runge-Kutta time integration (the case of the sphere), the element and boundary assembly times are this of the last assembly of current time step (out of three for third order).
3. At the end of *.log file, total timings are shown for all modules. In this case we use the first value of the NASTIN MODULE.
Contact
-------
If you have any question regarding the runs, please feel free to contact Guillaume Houzeaux: guillaume.houzeaux@bsc.es
3. At the end of *.log file, total timings are shown for all modules. In this case we use the first value of the NASTIN MODULE.
Contact
-------
If you have any question regarding the runs, please feel free to contact Guillaume Houzeaux: guillaume.houzeaux@bsc.es