//The format of 'size' is two integers separated with a '*'.
//The first integer is the domain size squired and the second integer is
//the number of iterations.
config const size = "100*10";//Default, 100 by 100 domain and 10 iterations
//Stop condition in amount of change (ignored when 'iterations' are non-zero).
config const epsilon = 1.0e-10;
//Parse the --size argument into 'n' and 'iterations'
use Regexp;
const arg = size.matches(compile("(\\d+)*(\\d+)"));
const arg_n = arg[1][1];
const arg_i = arg[2][1];
const n = size[arg_n.offset+1..arg_n.offset+arg_n.length] : int;
const iterations = size[arg_i.offset+1..arg_i.offset+arg_i.length]: int;
//Initiate a Timer object
use Time;
var timer : Timer;
//Now, let's implement the heat equation!
//We will use the Block distribution
use BlockDist;
//A n+2 by n+2 domain.
const Grid = {0..n+1, 0..n+1} dmapped Block({1..n, 1..n});
//A n by n domain that represents the interior of 'Grid'
const Interior = {1..n, 1..n} dmapped Block({1..n, 1..n});
var A, T : [Grid] real;//Zero initialized as default
A[..,0] = -273.15; //Left column
A[..,n+1] = -273.15; //Right column
A[n+1,..] = -273.15; //Bottom row
A[0,..] = 40.0; //Top row
timer.start();
var iter_count = 0;
do{
//Since all iterations are independent, we can use 'forall', which allows
//the Chapel runtime system to calculate the iterations in parallel
forall (i,j) in Interior do//Iterate over all non-border cells
{
//Assign each cell in 'T' the mean of its neighboring cells in 'A'
T[i,j] = (A[i,j] + A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 5;
}
//Delta is the total amount of change done in this iteration
const delta = + reduce abs(A[Interior] - T[Interior]);
//Copy back the non-border cells
A[Interior] = T[Interior];
//if 'iterations' is non-zero we stop after a fixed number of iterations
//otherwise we stop when the calculation has converged, i.e. 'delta' is smaller than 'epsilon'.
var stop = false;
if(iterations > 0)
{
if iter_count >= iterations then
stop = true;
}
else
{
if delta < epsilon then
stop = true;
}
} while (!stop);
timer.stop();
writeln("Heat Equation (multiple machines) - n: ",n,
", iterations: ", iterations,
", elapsed: ", timer.elapsed(), " seconds");