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 Appears in multiple simple daily applications

 Also part of many state-of-the-art algorithms in 
multiple fields (bioinformatics, networks, machine 
learning e.t.c.)

 An Embarrassing Parallel algorithm
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The problem: Dense Matrix-Vector 
Multiplication
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Dense Matrix-Vector Multiplication 
formula

Matrix-vector product
To define multiplication between a matrix A and a vector x (i.e., the matrix-vector product), we
need to view the vector as a column matrix. We define the matrix-vector product only for the 
case when the number of columns in A equals the number of rows in x. So, if A is an m×n matrix
(i.e., with n columns), then the product Ax is defined for n×1 column vectors x. If we let Ax=b, 
then b is an m×1 column vector. In other words, the number of rows in A (which can be
anything) determines the number of rows in the product b. 



 GRNET ARIS HPC ( https://hpc.grnet.gr/ )

 Utilized Hardware: http://doc.aris.grnet.gr/hardware/

CPUs

➢ Ivy Bridge - Intel Xeon E5-2680v2

➢Haswell - Intel(R) Xeon(R) E5-2660v3

➢SandyBridge - Intel(R) Xeon(R) CPU E5-4650v2

GPUs

➢NVIDIA Tesla K40
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Development environment

https://hpc.grnet.gr/
http://doc.aris.grnet.gr/hardware/


 CPU parallelization

➢ Serial Implementation ->

➢Naïve OpenMP implementation -> 

➢ Affinity/socket sensitive OpenMP implementation ->

➢MPI multinode implementation ->

➢Hybrid Multi node/threaded MPI-OpenMP 
implementation
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Our approach



 GPU parallelization

➢ Cuda implementation ->

▪ Naïve implementation

▪ Coalesced memory access

▪ Use of GPU shmem

➢ cuBLAS library implementation

➢Hybrid MPI-Multi-GPU implementation 
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Our approach



We started from a serial implementation

The code below performs the y = M*x operation  for y[n], M[n*m], 
x[m]

register double yi;

for (k = 0; k < n; ++k) {        

yi = 0.0 ;        

for (j = 0; j < m; ++j) 

yi += M[n*k+j]*x[j];   

y[k] = yi;    

}
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Matrix-Vector Multiplication Kernel



We can easily parallelize the kernel to up to n different units( We 
choose OMP_threads <= Hardware threads in our implementations.

First Naïve-OpenMP implementation with parallel for:

register double yi;

#pragma omp parallel for private(j,yi) shared(n,m,M,y) schedule(dynamic) for 
(k = 0; k < n; ++k) {        

yi = 0.0 ;        

for (j = 0; j < m; ++j) 

yi += M[n*k+j]*x[j];   

y[k] = yi;    

}
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OpenMP implementation



▪ First problem: Socket transactions and thread movement limit 
performance.

▪ This is caused by the relatively small operational intensity of the matrix-
vector multiplication kernel => performance greatly depends on 
memory bandwidth and cache utilization

▪ Flops :

▪ m*n additions, m*n multiplications -> 2*m*n Flops

▪ Bytes:

▪ m*n reads for x -> 8*m*n bytes (double precision) 

▪ m*n reads for M -> 8*n*m bytes (double precision) 

▪ n writes for y -> 8*n bytes (double precision) 

▪ Operational intensity = Flops/Bytes = m*n / [(8*m+4)*n]
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OpenMP implementation



▪ We want to limit socket transactions and better utilize caches

▪ We bind each OMP_thread to a physical core

➢ export OMP_PROC_BIND=spread

▪ Each thread initializes its part of the M array ->
▪ Memory initialized with first touch will be allocated to current thread’s bound core 

socket

▪ Each core’s cache now will contain only the elements it needs for its part of the 
computation

➢ #pragma omp parallel for schedule(static) 

for( i=0 ; i<n ; ++i){

for ( j=0 ; j<m ; ++j) M[i*m+j]=0.0;

}
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OpenMP implementation
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OpenMP results



▪ Todays architectures support huge multinode clusters

▪ Matrix-Vector Multiplication for huge arrays can easily utilize 
multiple nodes for further parallel computation

▪ We chose MPI ( Message passing interface ) for our multinode 
implementation. 

▪ 2 versions:

▪ Multinode MPI

▪ Hybrid Multi node/threaded MPI-OpenMP
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MPI implementation



▪ We now have multiple processes instead of a single process who 
spawns multiple threads

▪ Non-shared memory model

▪ Inter-process communication is required -> MPI

▪ Rank 0 process distributes equal chunks of data to all others
▪ MPI_Scatter for M array equal distribution

▪ MPI_broadcast for x vector

▪ Each process computes part of the y vector ( Process_num *Serial 
Kernels)

▪ Rank 0 gathers the y vector parts

▪ MPI_Gather
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MPI implementation



 Using MPI to spawn a process for each core ignores each node’s shared 
memory

 We can utilize this shared memory to reduce MPI communication

 Thus we use OpenMP for each node and MPI for inter-node 
communication (1 proc/node with OMP_threads/proc) 

 Same with MPI implementation, but now each process computes its 
part in parallel using OpenMP

 While the achieved speedup is satisfying, MPI communication time is 
much bigger than computation time. 

 We require a more compute intensive kernel in order to bypass this 
cost, or multiple iterative computations on fewer data.
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Hybrid MPI-OpenMP implementation



 Matrix-Vector Multiplication is a SIMD (single instruction multiple data)
algorithm, and thus eligible for GPU parallelization.

 Its huge memory bandwidth requirements fit well with the high-
bandwidth GPU memories. 

 Its operational simplicity makes it rather easy to implement as a GPU 
kernel.

 In our approach, we start with a naïve GPU version, and improve it step 
by step to better fit the GPU logic.
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GPU implementation



 In our first version, we simply convert our multiplication loop to device 
code.

 Each warp executes the same code in different data:

➢ int tid = get_global_tid();

double yi = 0.0;

if(tid >= n)

return ;

for ( int j = 0 ; j < n; j++ )

yi += + a[tid*n+j]*x[j];

y[tid]=yi;
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Naïve Cuda Implementation



 The naïve version performs very bad in big arrays where memory bandwidth 
is critical, because the memory transactions are slow.

 For this reason we change the array format (by transposing it) and make the 
kernel column major. 
➢ int tid = get_global_tid();

double yi = 0.0;

if(tid >= n)

return ;

for ( int j = 0 ; j < n; j++ )

yi += + a[n*j+ tid]*x[j];

y[tid]=yi;

 Now, the threads in each warp require contiguous elements of a,  and thus 
the memory transactions are coalesced, resulting in huge bandwidth 
improvement.
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Coalesced Cuda Implementation



 To further improve our coalesced version, we load the x vector before
the computation part into the GPU Shmem ( block shared memory)

 Now the x loading is also coalesced, and no memory bandwidth is 
expanded during the computation part in order to fetch the (now 
locally available) x vector.

 Since the x vector is probably bigger than the block shmem, we split the 
above in parts loading the x vector part we need each time.
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Shmem Cuda Implementation



extern __shared__ float shmem_buff[] ;
int tid = get_global_tid(), i, j;
double yi = 0.0;
if(tid >= n)

return ;
int block_s=blockDim.x*blockDim.y;
int lid=get_local_tid(), last_id = n/block_s ;
for( j = 0; j< last_id; j++) {

shmem_buff[lid] = x[block_s*j + lid];        
__syncthreads();
for( i = 0 ; i < block_s; i++ ) {

yi += a[tid+ (i+j*block_s)*n]*shmem_buff[i];
}
__syncthreads();

}
y[tid]=yi;
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Shmem Cuda Implementation



 cuBLAS is the optimized blas library  implementation for Nvidia GPUs

 In order to rate our work, we also created a basic  cuBLAS
implementation

 The results are shown in the graph below:
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cuBLAS Implementation
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GPU Implementation Results



 To conclude with our approach, we implement a hybrid GPU-Multinode 
implementation, using cuBLAS for the computation part and MPI in 
order to split the work in multiple GPUs.

 We can now compare our 2 best multinode implementations

 We test their performance in 3 different array sizes
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MPI-cuBLAS Hybrid
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Multinode Results Comparison


