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 Appears in multiple simple daily applications

 Also part of many state-of-the-art algorithms in 
multiple fields (bioinformatics, networks, machine 
learning e.t.c.)

 An Embarrassing Parallel algorithm
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The problem: Dense Matrix-Vector 
Multiplication
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Dense Matrix-Vector Multiplication 
formula

Matrix-vector product
To define multiplication between a matrix A and a vector x (i.e., the matrix-vector product), we
need to view the vector as a column matrix. We define the matrix-vector product only for the 
case when the number of columns in A equals the number of rows in x. So, if A is an m×n matrix
(i.e., with n columns), then the product Ax is defined for n×1 column vectors x. If we let Ax=b, 
then b is an m×1 column vector. In other words, the number of rows in A (which can be
anything) determines the number of rows in the product b. 



 GRNET ARIS HPC ( https://hpc.grnet.gr/ )

 Utilized Hardware: http://doc.aris.grnet.gr/hardware/

CPUs

➢ Ivy Bridge - Intel Xeon E5-2680v2

➢Haswell - Intel(R) Xeon(R) E5-2660v3

➢SandyBridge - Intel(R) Xeon(R) CPU E5-4650v2

GPUs

➢NVIDIA Tesla K40
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Development environment

https://hpc.grnet.gr/
http://doc.aris.grnet.gr/hardware/


 CPU parallelization

➢ Serial Implementation ->

➢Naïve OpenMP implementation -> 

➢ Affinity/socket sensitive OpenMP implementation ->

➢MPI multinode implementation ->

➢Hybrid Multi node/threaded MPI-OpenMP 
implementation
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Our approach



 GPU parallelization

➢ Cuda implementation ->

▪ Naïve implementation

▪ Coalesced memory access

▪ Use of GPU shmem

➢ cuBLAS library implementation

➢Hybrid MPI-Multi-GPU implementation 
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Our approach



We started from a serial implementation

The code below performs the y = M*x operation  for y[n], M[n*m], 
x[m]

register double yi;

for (k = 0; k < n; ++k) {        

yi = 0.0 ;        

for (j = 0; j < m; ++j) 

yi += M[n*k+j]*x[j];   

y[k] = yi;    

}
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Matrix-Vector Multiplication Kernel



We can easily parallelize the kernel to up to n different units( We 
choose OMP_threads <= Hardware threads in our implementations.

First Naïve-OpenMP implementation with parallel for:

register double yi;

#pragma omp parallel for private(j,yi) shared(n,m,M,y) schedule(dynamic) for 
(k = 0; k < n; ++k) {        

yi = 0.0 ;        

for (j = 0; j < m; ++j) 

yi += M[n*k+j]*x[j];   

y[k] = yi;    

}
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OpenMP implementation



▪ First problem: Socket transactions and thread movement limit 
performance.

▪ This is caused by the relatively small operational intensity of the matrix-
vector multiplication kernel => performance greatly depends on 
memory bandwidth and cache utilization

▪ Flops :

▪ m*n additions, m*n multiplications -> 2*m*n Flops

▪ Bytes:

▪ m*n reads for x -> 8*m*n bytes (double precision) 

▪ m*n reads for M -> 8*n*m bytes (double precision) 

▪ n writes for y -> 8*n bytes (double precision) 

▪ Operational intensity = Flops/Bytes = m*n / [(8*m+4)*n]
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OpenMP implementation



▪ We want to limit socket transactions and better utilize caches

▪ We bind each OMP_thread to a physical core

➢ export OMP_PROC_BIND=spread

▪ Each thread initializes its part of the M array ->
▪ Memory initialized with first touch will be allocated to current thread’s bound core 

socket

▪ Each core’s cache now will contain only the elements it needs for its part of the 
computation

➢ #pragma omp parallel for schedule(static) 

for( i=0 ; i<n ; ++i){

for ( j=0 ; j<m ; ++j) M[i*m+j]=0.0;

}
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OpenMP implementation
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OpenMP results



▪ Todays architectures support huge multinode clusters

▪ Matrix-Vector Multiplication for huge arrays can easily utilize 
multiple nodes for further parallel computation

▪ We chose MPI ( Message passing interface ) for our multinode 
implementation. 

▪ 2 versions:

▪ Multinode MPI

▪ Hybrid Multi node/threaded MPI-OpenMP
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MPI implementation



▪ We now have multiple processes instead of a single process who 
spawns multiple threads

▪ Non-shared memory model

▪ Inter-process communication is required -> MPI

▪ Rank 0 process distributes equal chunks of data to all others
▪ MPI_Scatter for M array equal distribution

▪ MPI_broadcast for x vector

▪ Each process computes part of the y vector ( Process_num *Serial 
Kernels)

▪ Rank 0 gathers the y vector parts

▪ MPI_Gather
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MPI implementation



 Using MPI to spawn a process for each core ignores each node’s shared 
memory

 We can utilize this shared memory to reduce MPI communication

 Thus we use OpenMP for each node and MPI for inter-node 
communication (1 proc/node with OMP_threads/proc) 

 Same with MPI implementation, but now each process computes its 
part in parallel using OpenMP

 While the achieved speedup is satisfying, MPI communication time is 
much bigger than computation time. 

 We require a more compute intensive kernel in order to bypass this 
cost, or multiple iterative computations on fewer data.

From Serial to Parallel 14

Hybrid MPI-OpenMP implementation



 Matrix-Vector Multiplication is a SIMD (single instruction multiple data)
algorithm, and thus eligible for GPU parallelization.

 Its huge memory bandwidth requirements fit well with the high-
bandwidth GPU memories. 

 Its operational simplicity makes it rather easy to implement as a GPU 
kernel.

 In our approach, we start with a naïve GPU version, and improve it step 
by step to better fit the GPU logic.
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GPU implementation



 In our first version, we simply convert our multiplication loop to device 
code.

 Each warp executes the same code in different data:

➢ int tid = get_global_tid();

double yi = 0.0;

if(tid >= n)

return ;

for ( int j = 0 ; j < n; j++ )

yi += + a[tid*n+j]*x[j];

y[tid]=yi;
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Naïve Cuda Implementation



 The naïve version performs very bad in big arrays where memory bandwidth 
is critical, because the memory transactions are slow.

 For this reason we change the array format (by transposing it) and make the 
kernel column major. 
➢ int tid = get_global_tid();

double yi = 0.0;

if(tid >= n)

return ;

for ( int j = 0 ; j < n; j++ )

yi += + a[n*j+ tid]*x[j];

y[tid]=yi;

 Now, the threads in each warp require contiguous elements of a,  and thus 
the memory transactions are coalesced, resulting in huge bandwidth 
improvement.
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Coalesced Cuda Implementation



 To further improve our coalesced version, we load the x vector before
the computation part into the GPU Shmem ( block shared memory)

 Now the x loading is also coalesced, and no memory bandwidth is 
expanded during the computation part in order to fetch the (now 
locally available) x vector.

 Since the x vector is probably bigger than the block shmem, we split the 
above in parts loading the x vector part we need each time.
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Shmem Cuda Implementation



extern __shared__ float shmem_buff[] ;
int tid = get_global_tid(), i, j;
double yi = 0.0;
if(tid >= n)

return ;
int block_s=blockDim.x*blockDim.y;
int lid=get_local_tid(), last_id = n/block_s ;
for( j = 0; j< last_id; j++) {

shmem_buff[lid] = x[block_s*j + lid];        
__syncthreads();
for( i = 0 ; i < block_s; i++ ) {

yi += a[tid+ (i+j*block_s)*n]*shmem_buff[i];
}
__syncthreads();

}
y[tid]=yi;
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Shmem Cuda Implementation



 cuBLAS is the optimized blas library  implementation for Nvidia GPUs

 In order to rate our work, we also created a basic  cuBLAS
implementation

 The results are shown in the graph below:

From Serial to Parallel 20

cuBLAS Implementation
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GPU Implementation Results



 To conclude with our approach, we implement a hybrid GPU-Multinode 
implementation, using cuBLAS for the computation part and MPI in 
order to split the work in multiple GPUs.

 We can now compare our 2 best multinode implementations

 We test their performance in 3 different array sizes
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MPI-cuBLAS Hybrid
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Multinode Results Comparison


