
From Serial to Parallel: A simple training
using the Martix-Vector multiplication

algorithm

From Serial to Parallel 1

Author:

Petros Anastasiadis

(p.anastasiadis.ece@gmail.com)

 Appears in multiple simple daily applications

 Also part of many state-of-the-art algorithms in
multiple fields (bioinformatics, networks, machine
learning e.t.c.)

 An Embarrassing Parallel algorithm

From Serial to Parallel 2

The problem: Dense Matrix-Vector
Multiplication

From Serial to Parallel 3

Dense Matrix-Vector Multiplication
formula

Matrix-vector product
To define multiplication between a matrix A and a vector x (i.e., the matrix-vector product), we
need to view the vector as a column matrix. We define the matrix-vector product only for the
case when the number of columns in A equals the number of rows in x. So, if A is an m×n matrix
(i.e., with n columns), then the product Ax is defined for n×1 column vectors x. If we let Ax=b,
then b is an m×1 column vector. In other words, the number of rows in A (which can be
anything) determines the number of rows in the product b.

 GRNET ARIS HPC (https://hpc.grnet.gr/)

 Utilized Hardware: http://doc.aris.grnet.gr/hardware/

CPUs

➢ Ivy Bridge - Intel Xeon E5-2680v2

➢Haswell - Intel(R) Xeon(R) E5-2660v3

➢SandyBridge - Intel(R) Xeon(R) CPU E5-4650v2

GPUs

➢NVIDIA Tesla K40

From Serial to Parallel 4

Development environment

https://hpc.grnet.gr/
http://doc.aris.grnet.gr/hardware/

 CPU parallelization

➢ Serial Implementation ->

➢Naïve OpenMP implementation ->

➢ Affinity/socket sensitive OpenMP implementation ->

➢MPI multinode implementation ->

➢Hybrid Multi node/threaded MPI-OpenMP
implementation

From Serial to Parallel 5

Our approach

 GPU parallelization

➢ Cuda implementation ->

▪ Naïve implementation

▪ Coalesced memory access

▪ Use of GPU shmem

➢ cuBLAS library implementation

➢Hybrid MPI-Multi-GPU implementation

From Serial to Parallel 6

Our approach

We started from a serial implementation

The code below performs the y = M*x operation for y[n], M[n*m],
x[m]

register double yi;

for (k = 0; k < n; ++k) {

yi = 0.0 ;

for (j = 0; j < m; ++j)

yi += M[n*k+j]*x[j];

y[k] = yi;

}

From Serial to Parallel 7

Matrix-Vector Multiplication Kernel

We can easily parallelize the kernel to up to n different units(We
choose OMP_threads <= Hardware threads in our implementations.

First Naïve-OpenMP implementation with parallel for:

register double yi;

#pragma omp parallel for private(j,yi) shared(n,m,M,y) schedule(dynamic) for
(k = 0; k < n; ++k) {

yi = 0.0 ;

for (j = 0; j < m; ++j)

yi += M[n*k+j]*x[j];

y[k] = yi;

}

From Serial to Parallel 8

OpenMP implementation

▪ First problem: Socket transactions and thread movement limit
performance.

▪ This is caused by the relatively small operational intensity of the matrix-
vector multiplication kernel => performance greatly depends on
memory bandwidth and cache utilization

▪ Flops :

▪ m*n additions, m*n multiplications -> 2*m*n Flops

▪ Bytes:

▪ m*n reads for x -> 8*m*n bytes (double precision)

▪ m*n reads for M -> 8*n*m bytes (double precision)

▪ n writes for y -> 8*n bytes (double precision)

▪ Operational intensity = Flops/Bytes = m*n / [(8*m+4)*n]

From Serial to Parallel 9

OpenMP implementation

▪ We want to limit socket transactions and better utilize caches

▪ We bind each OMP_thread to a physical core

➢ export OMP_PROC_BIND=spread

▪ Each thread initializes its part of the M array ->
▪ Memory initialized with first touch will be allocated to current thread’s bound core

socket

▪ Each core’s cache now will contain only the elements it needs for its part of the
computation

➢ #pragma omp parallel for schedule(static)

for(i=0 ; i<n ; ++i){

for (j=0 ; j<m ; ++j) M[i*m+j]=0.0;

}

From Serial to Parallel 10

OpenMP implementation

From Serial to Parallel 11

OpenMP results

▪ Todays architectures support huge multinode clusters

▪ Matrix-Vector Multiplication for huge arrays can easily utilize
multiple nodes for further parallel computation

▪ We chose MPI (Message passing interface) for our multinode
implementation.

▪ 2 versions:

▪ Multinode MPI

▪ Hybrid Multi node/threaded MPI-OpenMP

From Serial to Parallel 12

MPI implementation

▪ We now have multiple processes instead of a single process who
spawns multiple threads

▪ Non-shared memory model

▪ Inter-process communication is required -> MPI

▪ Rank 0 process distributes equal chunks of data to all others
▪ MPI_Scatter for M array equal distribution

▪ MPI_broadcast for x vector

▪ Each process computes part of the y vector (Process_num *Serial
Kernels)

▪ Rank 0 gathers the y vector parts

▪ MPI_Gather

From Serial to Parallel 13

MPI implementation

 Using MPI to spawn a process for each core ignores each node’s shared
memory

 We can utilize this shared memory to reduce MPI communication

 Thus we use OpenMP for each node and MPI for inter-node
communication (1 proc/node with OMP_threads/proc)

 Same with MPI implementation, but now each process computes its
part in parallel using OpenMP

 While the achieved speedup is satisfying, MPI communication time is
much bigger than computation time.

 We require a more compute intensive kernel in order to bypass this
cost, or multiple iterative computations on fewer data.

From Serial to Parallel 14

Hybrid MPI-OpenMP implementation

 Matrix-Vector Multiplication is a SIMD (single instruction multiple data)
algorithm, and thus eligible for GPU parallelization.

 Its huge memory bandwidth requirements fit well with the high-
bandwidth GPU memories.

 Its operational simplicity makes it rather easy to implement as a GPU
kernel.

 In our approach, we start with a naïve GPU version, and improve it step
by step to better fit the GPU logic.

From Serial to Parallel 15

GPU implementation

 In our first version, we simply convert our multiplication loop to device
code.

 Each warp executes the same code in different data:

➢ int tid = get_global_tid();

double yi = 0.0;

if(tid >= n)

return ;

for (int j = 0 ; j < n; j++)

yi += + a[tid*n+j]*x[j];

y[tid]=yi;

From Serial to Parallel 16

Naïve Cuda Implementation

 The naïve version performs very bad in big arrays where memory bandwidth
is critical, because the memory transactions are slow.

 For this reason we change the array format (by transposing it) and make the
kernel column major.
➢ int tid = get_global_tid();

double yi = 0.0;

if(tid >= n)

return ;

for (int j = 0 ; j < n; j++)

yi += + a[n*j+ tid]*x[j];

y[tid]=yi;

 Now, the threads in each warp require contiguous elements of a, and thus
the memory transactions are coalesced, resulting in huge bandwidth
improvement.

From Serial to Parallel 17

Coalesced Cuda Implementation

 To further improve our coalesced version, we load the x vector before
the computation part into the GPU Shmem (block shared memory)

 Now the x loading is also coalesced, and no memory bandwidth is
expanded during the computation part in order to fetch the (now
locally available) x vector.

 Since the x vector is probably bigger than the block shmem, we split the
above in parts loading the x vector part we need each time.

From Serial to Parallel 18

Shmem Cuda Implementation

extern __shared__ float shmem_buff[] ;
int tid = get_global_tid(), i, j;
double yi = 0.0;
if(tid >= n)

return ;
int block_s=blockDim.x*blockDim.y;
int lid=get_local_tid(), last_id = n/block_s ;
for(j = 0; j< last_id; j++) {

shmem_buff[lid] = x[block_s*j + lid];
__syncthreads();
for(i = 0 ; i < block_s; i++) {

yi += a[tid+ (i+j*block_s)*n]*shmem_buff[i];
}
__syncthreads();

}
y[tid]=yi;

From Serial to Parallel 19

Shmem Cuda Implementation

 cuBLAS is the optimized blas library implementation for Nvidia GPUs

 In order to rate our work, we also created a basic cuBLAS
implementation

 The results are shown in the graph below:

From Serial to Parallel 20

cuBLAS Implementation

From Serial to Parallel 21

GPU Implementation Results

 To conclude with our approach, we implement a hybrid GPU-Multinode
implementation, using cuBLAS for the computation part and MPI in
order to split the work in multiple GPUs.

 We can now compare our 2 best multinode implementations

 We test their performance in 3 different array sizes

From Serial to Parallel 22

MPI-cuBLAS Hybrid

From Serial to Parallel 23

Multinode Results Comparison

