
From Serial to Parallel: A simple training
using the Martix-Vector multiplication

algorithm

From Serial to Parallel 1

Author:

Petros Anastasiadis

(p.anastasiadis.ece@gmail.com)

 Appears in multiple simple daily applications

 Also part of many state-of-the-art algorithms in
multiple fields (bioinformatics, networks, machine
learning e.t.c.)

 An Embarrassing Parallel algorithm

From Serial to Parallel 2

The problem: Dense Matrix-Vector
Multiplication

From Serial to Parallel 3

Dense Matrix-Vector Multiplication
formula

Matrix-vector product
To define multiplication between a matrix A and a vector x (i.e., the matrix-vector product), we
need to view the vector as a column matrix. We define the matrix-vector product only for the
case when the number of columns in A equals the number of rows in x. So, if A is an m×n matrix
(i.e., with n columns), then the product Ax is defined for n×1 column vectors x. If we let Ax=b,
then b is an m×1 column vector. In other words, the number of rows in A (which can be
anything) determines the number of rows in the product b.

 GRNET ARIS HPC (https://hpc.grnet.gr/)

 Utilized Hardware: http://doc.aris.grnet.gr/hardware/

CPUs

➢ Ivy Bridge - Intel Xeon E5-2680v2

➢Haswell - Intel(R) Xeon(R) E5-2660v3

➢SandyBridge - Intel(R) Xeon(R) CPU E5-4650v2

GPUs

➢NVIDIA Tesla K40

From Serial to Parallel 4

Development environment

https://hpc.grnet.gr/
http://doc.aris.grnet.gr/hardware/

 CPU parallelization

➢ Serial Implementation ->

➢Naïve OpenMP implementation ->

➢ Affinity/socket sensitive OpenMP implementation ->

➢MPI multinode implementation ->

➢Hybrid Multi node/threaded MPI-OpenMP
implementation

From Serial to Parallel 5

Our approach

 GPU parallelization

➢ Cuda implementation ->

▪ Naïve implementation

▪ Coalesced memory access

▪ Use of GPU shmem

➢ cuBLAS library implementation

➢Hybrid MPI-Multi-GPU implementation

From Serial to Parallel 6

Our approach

We started from a serial implementation

The code below performs the y = M*x operation for y[n], M[n*m],
x[m]

register double yi;

for (k = 0; k < n; ++k) {

yi = 0.0 ;

for (j = 0; j < m; ++j)

yi += M[n*k+j]*x[j];

y[k] = yi;

}

From Serial to Parallel 7

Matrix-Vector Multiplication Kernel

We can easily parallelize the kernel to up to n different units(We
choose OMP_threads <= Hardware threads in our implementations.

First Naïve-OpenMP implementation with parallel for:

register double yi;

#pragma omp parallel for private(j,yi) shared(n,m,M,y) schedule(dynamic) for
(k = 0; k < n; ++k) {

yi = 0.0 ;

for (j = 0; j < m; ++j)

yi += M[n*k+j]*x[j];

y[k] = yi;

}

From Serial to Parallel 8

OpenMP implementation

▪ First problem: Socket transactions and thread movement limit
performance.

▪ This is caused by the relatively small operational intensity of the matrix-
vector multiplication kernel => performance greatly depends on
memory bandwidth and cache utilization

▪ Flops :

▪ m*n additions, m*n multiplications -> 2*m*n Flops

▪ Bytes:

▪ m*n reads for x -> 8*m*n bytes (double precision)

▪ m*n reads for M -> 8*n*m bytes (double precision)

▪ n writes for y -> 8*n bytes (double precision)

▪ Operational intensity = Flops/Bytes = m*n / [(8*m+4)*n]

From Serial to Parallel 9

OpenMP implementation

▪ We want to limit socket transactions and better utilize caches

▪ We bind each OMP_thread to a physical core

➢ export OMP_PROC_BIND=spread

▪ Each thread initializes its part of the M array ->
▪ Memory initialized with first touch will be allocated to current thread’s bound core

socket

▪ Each core’s cache now will contain only the elements it needs for its part of the
computation

➢ #pragma omp parallel for schedule(static)

for(i=0 ; i<n ; ++i){

for (j=0 ; j<m ; ++j) M[i*m+j]=0.0;

}

From Serial to Parallel 10

OpenMP implementation

From Serial to Parallel 11

OpenMP results

▪ Todays architectures support huge multinode clusters

▪ Matrix-Vector Multiplication for huge arrays can easily utilize
multiple nodes for further parallel computation

▪ We chose MPI (Message passing interface) for our multinode
implementation.

▪ 2 versions:

▪ Multinode MPI

▪ Hybrid Multi node/threaded MPI-OpenMP

From Serial to Parallel 12

MPI implementation

▪ We now have multiple processes instead of a single process who
spawns multiple threads

▪ Non-shared memory model

▪ Inter-process communication is required -> MPI

▪ Rank 0 process distributes equal chunks of data to all others
▪ MPI_Scatter for M array equal distribution

▪ MPI_broadcast for x vector

▪ Each process computes part of the y vector (Process_num *Serial
Kernels)

▪ Rank 0 gathers the y vector parts

▪ MPI_Gather

From Serial to Parallel 13

MPI implementation

 Using MPI to spawn a process for each core ignores each node’s shared
memory

 We can utilize this shared memory to reduce MPI communication

 Thus we use OpenMP for each node and MPI for inter-node
communication (1 proc/node with OMP_threads/proc)

 Same with MPI implementation, but now each process computes its
part in parallel using OpenMP

 While the achieved speedup is satisfying, MPI communication time is
much bigger than computation time.

 We require a more compute intensive kernel in order to bypass this
cost, or multiple iterative computations on fewer data.

From Serial to Parallel 14

Hybrid MPI-OpenMP implementation

 Matrix-Vector Multiplication is a SIMD (single instruction multiple data)
algorithm, and thus eligible for GPU parallelization.

 Its huge memory bandwidth requirements fit well with the high-
bandwidth GPU memories.

 Its operational simplicity makes it rather easy to implement as a GPU
kernel.

 In our approach, we start with a naïve GPU version, and improve it step
by step to better fit the GPU logic.

From Serial to Parallel 15

GPU implementation

 In our first version, we simply convert our multiplication loop to device
code.

 Each warp executes the same code in different data:

➢ int tid = get_global_tid();

double yi = 0.0;

if(tid >= n)

return ;

for (int j = 0 ; j < n; j++)

yi += + a[tid*n+j]*x[j];

y[tid]=yi;

From Serial to Parallel 16

Naïve Cuda Implementation

 The naïve version performs very bad in big arrays where memory bandwidth
is critical, because the memory transactions are slow.

 For this reason we change the array format (by transposing it) and make the
kernel column major.
➢ int tid = get_global_tid();

double yi = 0.0;

if(tid >= n)

return ;

for (int j = 0 ; j < n; j++)

yi += + a[n*j+ tid]*x[j];

y[tid]=yi;

 Now, the threads in each warp require contiguous elements of a, and thus
the memory transactions are coalesced, resulting in huge bandwidth
improvement.

From Serial to Parallel 17

Coalesced Cuda Implementation

 To further improve our coalesced version, we load the x vector before
the computation part into the GPU Shmem (block shared memory)

 Now the x loading is also coalesced, and no memory bandwidth is
expanded during the computation part in order to fetch the (now
locally available) x vector.

 Since the x vector is probably bigger than the block shmem, we split the
above in parts loading the x vector part we need each time.

From Serial to Parallel 18

Shmem Cuda Implementation

extern __shared__ float shmem_buff[] ;
int tid = get_global_tid(), i, j;
double yi = 0.0;
if(tid >= n)

return ;
int block_s=blockDim.x*blockDim.y;
int lid=get_local_tid(), last_id = n/block_s ;
for(j = 0; j< last_id; j++) {

shmem_buff[lid] = x[block_s*j + lid];
__syncthreads();
for(i = 0 ; i < block_s; i++) {

yi += a[tid+ (i+j*block_s)*n]*shmem_buff[i];
}
__syncthreads();

}
y[tid]=yi;

From Serial to Parallel 19

Shmem Cuda Implementation

 cuBLAS is the optimized blas library implementation for Nvidia GPUs

 In order to rate our work, we also created a basic cuBLAS
implementation

 The results are shown in the graph below:

From Serial to Parallel 20

cuBLAS Implementation

From Serial to Parallel 21

GPU Implementation Results

 To conclude with our approach, we implement a hybrid GPU-Multinode
implementation, using cuBLAS for the computation part and MPI in
order to split the work in multiple GPUs.

 We can now compare our 2 best multinode implementations

 We test their performance in 3 different array sizes

From Serial to Parallel 22

MPI-cuBLAS Hybrid

From Serial to Parallel 23

Multinode Results Comparison

