Skip to content
mklspgemm.c 19.9 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*includes {{{*/
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <mkl.h>
#include "mmio.h"
/*}}}*/

/* global varibles and defines {{{*/
int micdev = 0;
__declspec(target(mic)) int nrepeat = 100;
__declspec(target(mic)) int option_print_matrices = 0;
#define OPTION_NOPRINT_MATRICES 0
#define OPTION_PRINT_MATRICES 1
__declspec(target(mic)) char transa = 'n';
typedef int csi;
typedef double csv;
csv zero = 0.0;
#define CS_MAX(a,b) (((a) > (b)) ? (a) : (b))
__declspec(target(mic)) int nthreads;
typedef struct csr_t {
  csi  m; 
  csi  n; 
  csi  nzmax;
  csi  nr; 
  csi* r; 
  csi* p; 
  csi* j; 
  csv* x; 
} csr;
/*}}}*/

/* method declarations {{{*/
int  main(int argc, char* argv[]);
__declspec(target(mic)) void printmm_one(int m, double* Aval, int* AJ, int* AI);
__declspec(target(mic)) void printfilemm_one(char* file, int m, int n, double* Aval, int* AJ, int* AI);
__declspec(target(mic)) void printmm_zero(int m, double* Aval, int* AJ, int* AI);
csr *csr_spfree(csr *A);
/*}}}*/

/*csr util{{{*/

/* free workspace and return a sparse matrix result */
csr *csr_done(csr *C, void *w, void *x, csi ok) {
        return(ok ? C : csr_spfree(C)); /* return result if OK, else free it */
}

/* wrapper for free */
void *cs_free(void *p) {
        if (p)
                free(p); /* free p if it is not already NULL */
        return(NULL); /* return NULL to simplify the use of cs_free */
}

/* wrapper for realloc */
void *csr_realloc(void *p, csi n, size_t size, csi *ok) {
        void *pnew = NULL;
        pnew = realloc(p, CS_MAX(n, 1) * size); /* realloc the block */
        *ok = (pnew != NULL); /* realloc fails if pnew is NULL */
        if (pnew == NULL) {
                printf("%d:reallocation failed, pnew is NULL\n", __LINE__);
        }
//printf("%s:%d: n=%d ok=%d\n", __FUNCTION__, __LINE__, n, *ok);
        return((*ok) ? pnew : p); /* return original p if failure */
}

/* wrapper for realloc */
void *cs_realloc(void *p, csi n, size_t size, csi *ok) {
        void *pnew = NULL;
        pnew = realloc(p, CS_MAX(n, 1) * size); /* realloc the block */
        *ok = (pnew != NULL); /* realloc fails if pnew is NULL */
        if (pnew == NULL) {
                printf("reallocation failed\n");
        }
        return((*ok) ? pnew : p); /* return original p if failure */
}

/* change the max # of entries sparse matrix */
csi csr_sprealloc(csr *A, csi nzmax) {
        csi ok, oki = 0, okj = 1, okx = 1;
        if (!A)
                return(0);
        if (nzmax <= 0)
                nzmax = A->p[A->m];
        A->j = (int*)csr_realloc(A->j, nzmax, sizeof(csi), &oki);
        if (A->x)
                A->x = (csv*)csr_realloc(A->x, nzmax, sizeof(csv), &okx);
        ok = (oki && okj && okx);
        if (ok)
                A->nzmax = nzmax;
        return(ok);
}

/* free a sparse matrix */
csr *csr_spfree(csr *A) {
        if (!A)
                return(NULL); /* do nothing if A already NULL */
        cs_free(A->p);
        A->p = NULL;
        cs_free(A->j);
        A->j = NULL;
        cs_free(A->x);
        A->x = NULL;
        cs_free(A->r);
        A->r = NULL;
        cs_free(A); /* free the cs struct and return NULL */
    return NULL;
}

/* allocate a sparse matrix (triplet form or compressed-ROW form) */
csr *csr_spalloc(csi m, csi n, csi nzmax, int values, int triplet, csv f) {
        csr* A = (csr*)calloc(1, sizeof(csr)); /* allocate the cs struct */
        if (!A) {
                perror("sparse allocation failed");
                return(NULL); /* out of memory */
        }
        A->m = m; /* define dimensions and nzmax */
        A->n = n;
        A->nzmax = nzmax = CS_MAX(nzmax, 0);
        A->nr = 0;  // number of nonzero rows
        A->p = (csi*)calloc(m + 2, sizeof(csi));
        A->j = (csi*)calloc(CS_MAX(nzmax,1), sizeof(csi));
        A->x = (csv*)calloc(CS_MAX(nzmax,1), sizeof(csv));
        return((!A->p || !A->j || !A->x) ? csr_spfree(A) : A);

}/*}}}*/

/** Multiply two sparse matrices which are stored in CSR format. MKL is used */
csr *csr_multiply(csi Am, csi An, csi Anzmax, const csi* Ap, const csi* Aj, const csv* Ax, csi Bm, csi Bn, csi Bnzmax, const csi* Bp, const csi* Bj, const csv* Bx, long* nummult, csi* xb, csv* x) { /*{{{*/
    csv tf = 0;
    csi p, jp, j, kp, k, i, nz = 0, anz, *Cp, *Cj, m, n,
        bnz, values = 1;
    csv *Cx;
    csr *C;
    if (An != Bm)
        return(NULL);
    if (Anzmax == 0 || Bnzmax == 0) {
        C = csr_spalloc(Am, Bn, 0, values, 0, tf);
        return C;
    }
    m = Am;
    anz = Ap[Am];
    n = Bn;
    bnz = Bp[Bm];
    for(i = 0; i < n; i++) xb[i] = 0;
    for(i = 0; i < n; i++)
        xb[i] = 0;
    values = (Ax != NULL) && (Bx != NULL);
    csi tnz = (anz + bnz) * 2;
    C = csr_spalloc(m, n, tnz, values, 0, tf); /* allocate result */
    if (!C || !xb || (values && !x))
        return (csr_done(C, xb, x, 0));
    Cp = C->p;
    for (i = 0; i < m; i++) {
        if ( ( (nz + n) > C->nzmax ) ) {
            if(!csr_sprealloc(C, (2 * (C->nzmax) + n) ) ) {
                return (csr_done(C, xb, x, 0)); // out of memory
            } else {
            }
        }
        Cj = C->j;
        Cx = C->x; /* C->j and C->x may be reallocated */
        Cp[i] = nz; /* row i of C starts here */
        for (jp = Ap[i]; jp < Ap[i + 1]; jp++) {
            j = Aj[jp];
            for (kp = Bp[j]; kp < Bp[j + 1]; kp++) {
                k = Bj[kp]; /* B(i,j) is nonzero */
                if (xb[k] != i + 1) {
                    xb[k] = i + 1; /* i is new entry in column j */
                    Cj[nz++] = k; /* add i to pattern of C(:,j) */
                    if (x) {
                        x[k] = Ax[jp] * Bx[kp]; /* x(i) = beta*A(i,j) */
                        (*nummult)++;
                    }
                } else if (x) {
                    x[k] += (Ax[jp] * Bx[kp]); /* i exists in C(:,j) already */
                    (*nummult)++;
                }
            }
        }
        if (values)
            for (p = Cp[i]; p < nz; p++)
                Cx[p] = x[Cj[p]];
    }
    Cp[m] = nz; /* finalize the last row of C */
    csr_sprealloc(C, 0); /* remove extra space from C */
    xb = NULL;
    x = NULL;
    return C;
}/*}}}*/

/** Multiply two sparse matrices which are stored in CSR format. MKL is used */
void mkl_cpu_spgemm(MKL_INT Am, MKL_INT An, MKL_INT Annz, double* Aval, MKL_INT* AJ, MKL_INT* AI, MKL_INT Bn, MKL_INT Bnnz, double* Bval, MKL_INT* BJ, MKL_INT* BI, double** pCval, MKL_INT** pCJ, MKL_INT** pCI, double* time) {  /*{{{*/

MKL_INT* CJ = NULL;
double* Cval = NULL;
MKL_INT sort = 3;    // sort everything
MKL_INT* CI = (MKL_INT*)mkl_malloc( (Am+2) * sizeof( MKL_INT ), 64 );
MKL_INT nnzmax = 0;    // nnzmax is zero in case of symbolic&numeric usage of mkl_?csrmultcsr
MKL_INT ierr;
MKL_INT request = 1;    // symbolic multiplication
mkl_dcsrmultcsr(&transa, &request, &sort, &Am, &An, &Bn, Aval, AJ, AI, Bval, BJ, BI, Cval, CJ, CI, &nnzmax, &ierr);

request = 2;        //numeric multiplication
int Cnnz = CI[Am]-1;
int Cval_size = Cnnz + 1;
CJ = (MKL_INT*)mkl_malloc( Cval_size    *    sizeof( MKL_INT ), 64 );
Cval = (double*)mkl_malloc( Cval_size    *    sizeof( double ), 64 );
double time_st = dsecnd();
int i;
for(i = 0; i < nrepeat; i++) {
    mkl_dcsrmultcsr(&transa, &request, &sort, &Am, &An, &Bn, Aval, AJ, AI, Bval, BJ, BI, Cval, CJ, CI, &nnzmax, &ierr);
}
double time_end = dsecnd();
*time = (time_end - time_st)/nrepeat;
*pCval = Cval; *pCJ = CJ; *pCI = CI;
} /*}}}*/ 
void mkl_mic_spgemm(MKL_INT Am, MKL_INT An, MKL_INT Annz, double* Aval, MKL_INT* AJ, MKL_INT* AI, MKL_INT Bn, MKL_INT Bnnz, double* Bval, MKL_INT* BJ, MKL_INT* BI, double** pCval, MKL_INT** pCJ, MKL_INT** pCI, double* time) {/*{{{*/

	int i;
	#pragma offload target(mic:micdev) inout(nthreads)
	{
		if (nthreads > 0) {
			mkl_set_num_threads(nthreads);
		} else {
			nthreads = mkl_get_max_threads();
		}
	}  // printf("MIC started \n"); fflush(stdout);
	#pragma offload target(mic:micdev) \
		in(transa) \
		in(Am) \
		in(An) \
		in(Bn) \
		in(Aval:length(Annz)	free_if(0)) \
		in(AI:length(Am+1)	free_if(0)) \
		in(AJ:length(Annz)	free_if(0)) \
		in(Bval:length(Bnnz)	free_if(0)) \
		in(BI:length(An+1)	free_if(0)) \
		in(BJ:length(Bnnz)	free_if(0)) 
	{}
	

	//void mkl_dcsrmultcsr (char *transa, MKL_INT *job, MKL_INT *sort, MKL_INT *m, MKL_INT *n, MKL_INT *k, double *a, MKL_INT *ja, MKL_INT *ia, double *b, MKL_INT *jb, MKL_INT *ib, double *c, MKL_INT *jc, MKL_INT *ic, MKL_INT *nnzmax, MKL_INT *ierr);


//	double s_initial = dsecnd();
//	double s_elapsed = dsecnd() - s_initial; // seconds

	MKL_INT	Cnnz_host = -1;
	MKL_INT* CI = NULL;
	MKL_INT* CJ = NULL;
	double* Cval = NULL;
	MKL_INT nnzmax = 0;	// nnzmax is zero in case of symbolic&numeric usage of mkl_?csrmultcsr
	MKL_INT ierr;
	MKL_INT request = 2;	//numeric multiplication
	MKL_INT sort = 3;	// sort everything
	double time_mic_symbolic_mm = 0.0;
	#pragma offload target(mic:micdev) in(i) in(ierr) in(nnzmax) in(request) in(sort) in(transa) in(Am)  in(An) in(Bn) \
		out(time_mic_symbolic_mm) out(Cnnz_host)\
		in(Aval:length(Annz)	alloc_if(0)	free_if(0)) \
		in(AI:length(Am+1)	alloc_if(0)	free_if(0)) \
		in(AJ:length(Annz)	alloc_if(0)	free_if(0)) \
		in(Bval:length(Bnnz)	alloc_if(0)	free_if(0)) \
		in(BI:length(An+1)	alloc_if(0)	free_if(0)) \
		in(BJ:length(Bnnz)	alloc_if(0)	free_if(0)) \
		nocopy(CI:	alloc_if(0)	free_if(0)) \
		nocopy(CJ:	alloc_if(0)	free_if(0)) \
		nocopy(Cval:	alloc_if(0)	free_if(0))
	{
		CI = (MKL_INT*)mkl_malloc( (Am+2) * sizeof( MKL_INT ), 64 );
		MKL_INT nnzmax = 0;	// nnzmax is zero in case of symbolic&numeric usage of mkl_?csrmultcsr
		MKL_INT ierr;
		MKL_INT request = 1;	// symbolic multiplication
		//MKL_INT sort = 7;	// do not sort anything

		for(i = 0; i < 10; i++) {
			mkl_dcsrmultcsr(&transa, &request, &sort, &Am, &An, &Bn, Aval, AJ, AI, Bval, BJ, BI, Cval, CJ, CI, &nnzmax, &ierr);
		}	
		double s_initial = dsecnd();
		for(i = 0; i < nrepeat; i++) {
			mkl_dcsrmultcsr(&transa, &request, &sort, &Am, &An, &Bn, Aval, AJ, AI, Bval, BJ, BI, Cval, CJ, CI, &nnzmax, &ierr);
		}	
		time_mic_symbolic_mm = (dsecnd() - s_initial) / nrepeat; // seconds

		request = 2;		//numeric multiplication
		int Cnnz = CI[Am]-1;
		int Cval_size = Cnnz + 1; Cnnz_host = Cnnz;
		CJ		= (MKL_INT*)mkl_malloc( Cval_size	*	sizeof( MKL_INT ), 64 );
		Cval		= (double*)mkl_malloc( Cval_size	*	sizeof( double ), 64 );
		mkl_dcsrmultcsr(&transa, &request, &sort, &Am, &An, &An, Aval, AJ, AI, Bval, BJ, BI, Cval, CJ, CI, &nnzmax, &ierr);
		printmm_one(Am, Cval, CJ, CI);//printf("Cnnz=%d\n", Cnnz);
		sort = 7;		// do not sort anything
		request = 2;		// numeric multiplication
	}//printf("Cnnz_mic: %d\n", Cnnz_host);exit(-1);
	double time_mic_numeric_mm = 0.0;
	#pragma offload target(mic:micdev) nocopy(request) nocopy(sort) nocopy(i) nocopy(ierr) nocopy(nnzmax)  nocopy(transa) nocopy(Am) nocopy(An) nocopy(Bn) \
		out(time_mic_numeric_mm) \
		nocopy(Aval:length(Annz)	alloc_if(0)	free_if(0)) \
		nocopy(AI:length(Am+1)	alloc_if(0)	free_if(0)) \
		nocopy(AJ:length(Annz)	alloc_if(0)	free_if(0)) \
		nocopy(Bval:length(Bnnz)	alloc_if(0)	free_if(0)) \
		nocopy(BI:length(An+1)	alloc_if(0)	free_if(0)) \
		nocopy(BJ:length(Bnnz)	alloc_if(0)	free_if(0)) \
		nocopy(CI:	alloc_if(0)	free_if(0)) \
		nocopy(CJ:	alloc_if(0)	free_if(0)) \
		nocopy(Cval:	alloc_if(0)	free_if(0))
	{
		//sort = 7
		//request = 1; 2'ye gore sure iki katina cikiyor
		//request = 0; 2'ye gore sure uc katina cikiyor

		//request = 2
		//sort = 3; 7'ye gore %30 daha yavas
		//printf("sort:%d request:%d\n", sort, request); // prints sort:7 request:2
		for(i = 0; i < 10; i++) {
			mkl_dcsrmultcsr(&transa, &request, &sort, &Am, &An, &An, Aval, AJ, AI, Bval, BJ, BI, Cval, CJ, CI, &nnzmax, &ierr);
		}
		double s_initial = dsecnd();
		for(i = 0; i < nrepeat; i++) {
			mkl_dcsrmultcsr(&transa, &request, &sort, &Am, &An, &An, Aval, AJ, AI, Bval, BJ, BI, Cval, CJ, CI, &nnzmax, &ierr);
		}
		time_mic_numeric_mm = (dsecnd() - s_initial) / nrepeat; // seconds
	}
	if (0) {
	int nelm_CI = Am + 2; 
	int nelm_CJ = Cnnz_host + 1; 
	int nelm_Cval = Cnnz_host + 1; 
	__declspec(target(mic)) MKL_INT* CI_host = (MKL_INT*)mkl_malloc( (nelm_CI) * sizeof( MKL_INT ), 64 );
	__declspec(target(mic)) MKL_INT* CJ_host = (MKL_INT*)mkl_malloc( (nelm_CJ) * sizeof( MKL_INT ), 64 );
	__declspec(target(mic)) double* Cval_host = (double*)mkl_malloc( (nelm_Cval) * sizeof( double ), 64 );
	#pragma offload target(mic:micdev) in(nelm_CI)\ 
		inout(CI_host:length(nelm_CI)	alloc_if(1)	free_if(0)) \
		inout(CJ_host:length(nelm_CJ)	alloc_if(1)	free_if(0)) \
		inout(Cval_host:length(nelm_Cval)	alloc_if(1)	free_if(0)) \
		nocopy(CI:	alloc_if(0)	free_if(0)) \
		nocopy(CJ:	alloc_if(0)	free_if(0)) \
		nocopy(Cval:	alloc_if(0)	free_if(0))
	{
		int i;
		for(i = 0; i < nelm_CI; i++) CI_host[i] = CI[i];
		for(i = 0; i < nelm_CJ; i++) {CJ_host[i] = CJ[i]; Cval_host[i] = Cval[i];}
	}
	*pCval = Cval_host; *pCJ = CJ_host; *pCI = CI_host; //printf("Cnnz_host:%d\n", Cnnz_host);
	}
} /* ENDOF mkl_mic_spmm }}}*/

/** Read Matrix Market file into COO matrix */
void read_mm(char* strpath, int* pM, int* pN, int* prealnnz, int** pI, int** pJ, double** pval){ /*{{{*/
/* 
*   taken from Matrix Market I/O library for ANSI C
*
*   See http://math.nist.gov/MatrixMarket for details.
*
*
*/

int i, M, N, nz, *I, *J;
double* val;
int ret_code;
MM_typecode matcode;
FILE* f;
if ((f = fopen(strpath, "r")) == NULL) {fprintf(stderr, "Input matrix file %s cannot be opened to read.", strpath);exit(1);}
/* READ MATRIX */
if (mm_read_banner(f, &matcode) != 0) {
    printf("Could not process Matrix Market banner.\n");    exit(1);
}
/*  This is how one can screen matrix types if their application */
/*  only supports a subset of the Matrix Market data types.      */
if (mm_is_complex(matcode) && mm_is_matrix(matcode) && mm_is_sparse(matcode) ) {
    printf("Sorry, this application does not support ");
    printf("Market Market type: [%s]\n", mm_typecode_to_str(matcode));exit(1);
}
/* find out size of sparse matrix .... */
if ((ret_code = mm_read_mtx_crd_size(f, &M, &N, &nz)) !=0) exit(1);
/* reseve memory for matrices */
I = (int *) malloc((mm_is_symmetric(matcode) ? 2*nz : nz) * sizeof(int));
J = (int *) malloc((mm_is_symmetric(matcode) ? 2*nz : nz) * sizeof(int));
val = (double *) malloc((mm_is_symmetric(matcode) ? 2*nz : nz) * sizeof(double));
*pI = I;
*pJ = J;
*pval = val;
/* NOTE: when reading in doubles, ANSI C requires the use of the "l"  */
/*   specifier as in "%lg", "%lf", "%le", otherwise errors will occur */
/*  (ANSI C X3.159-1989, Sec. 4.9.6.2, p. 136 lines 13-15)            */
int realnnz = 0;
for (i=0; i<nz; i++) {
    if(mm_is_pattern(matcode)) {
        fscanf(f, "%d %d\n", &I[realnnz], &J[realnnz]);
        val[realnnz] = 1.0;
    }
    else
        fscanf(f, "%d %d %lg\n", &I[realnnz], &J[realnnz], &val[realnnz]);
    I[realnnz]--;  /* adjust from 1-based to 0-based */
        J[realnnz]--;
    if(mm_is_symmetric(matcode) && I[realnnz] != J[realnnz]) {
        I[realnnz+1] = J[realnnz];
        J[realnnz+1] = I[realnnz];
        val[realnnz+1] = val[realnnz];
        realnnz++;
    }
    realnnz++;
}
if (f !=stdin) fclose(f);
*pM = M;
*pN = N;
*prealnnz = realnnz;
} /* ENDOF read_mm }}}*/

/** Converts COO matrix to CSR matrix */
void coo_to_csr(int m, int nnz, int* I, int* J, double* val, MKL_INT* AI, MKL_INT* AJ, double* Aval) { /*{{{*/

MKL_INT info = 0;
MKL_INT job[8];   
//job[1]=0; // zero based indexing in csr
job[1]=1; // one based indexing in csr

job[2]=0; // zero based indexing in coo
job[3]=2; // I don't know
job[4]=nnz; // nnz

job[0]=1;  // coo to csr
job[5]=0;  // Acsr and AJR allocated by user
//void mkl_dcsrcoo (MKL_INT * job, MKL_INT * n, double *Acsr, MKL_INT * AJR, MKL_INT *AIR, MKL_INT * nnz, double *Acoo, MKL_INT * ir, MKL_INT * jc, MKL_INT * info);
mkl_dcsrcoo (job,&m, Aval, AJ, AI, &nnz, val, I, J, &info);
} /* ENDOF coo_to_csr }}}*/

int main(int argc, char* argv[]) { /*{{{*/
/** usage */
int nrequired_args = 7;
if (argc != nrequired_args){
    fprintf(stderr, "NAME:\n\tmkl_spgemm - multiply two sparse matrices\n");
    fprintf(stderr, "\nSYNOPSIS:\n");
    fprintf(stderr, "\tmkl_spgemm MATRIX_A MATRIX_B MATRIX_C NUMBER_OF_THREADS MIC_ID PRINT_MATRICES\n");
    fprintf(stderr, "\nDESCRIPTION:\n");
    fprintf(stderr, "\tNUMBER_OF_THREADS: {0,1,2,...}\n");
    fprintf(stderr, "\t\t0: Use number of threads determined by MKL\n");
    fprintf(stderr, "\tPRINT_MATRICES: PRINT_YES, PRINT_NO\n");
    fprintf(stderr, "\tMIC_ID: {0,1,2,...}\n");
    fprintf(stderr, "\t\t0: The device ID\n");
    fprintf(stderr, "\nSAMPLE EXECUTION:\n");
    fprintf(stderr, "\texport OFFLOAD_INIT=on_offload;%s test.mtx test.mtx out.mtx 2 0 PRINT_YES\n", argv[0]);
    exit(1);
}
/** parse arguments */
int iarg = 1;
char* strpathA = argv[iarg];    iarg++;
char* strpathB = argv[iarg];    iarg++;
char* strpathC = argv[iarg];    iarg++;
nthreads = atoi(argv[iarg]);    iarg++;
if (nthreads > 0) {
    mkl_set_num_threads(nthreads);
} else {
    nthreads = mkl_get_max_threads();
}
micdev = atoi(argv[iarg]);    iarg++;
option_print_matrices = strcmp(argv[iarg], "PRINT_YES")==0?OPTION_PRINT_MATRICES:OPTION_NOPRINT_MATRICES;    iarg++;
assert(nrequired_args == iarg);

/** read matrix market file for A matrix */
MKL_INT Am, An, Annz;
MKL_INT *Ax, *Ay;  
double *Anz;
read_mm(strpathA, &Am, &An, &Annz, &Ax, &Ay, &Anz);

/** construct csr storage for A matrix */
MKL_INT* AJ = (MKL_INT*) mkl_malloc( Annz * sizeof( MKL_INT ), 64 );
MKL_INT* AI = (MKL_INT*) mkl_malloc( (Am+1) * sizeof( MKL_INT ), 64 );
double* Aval = (double*) mkl_malloc( Annz * sizeof( double ),  64 );
coo_to_csr(Am, Annz, Ax, Ay, Anz, AI, AJ, Aval);    

/** read matrix market file for B matrix */
MKL_INT Bm, Bn, Bnnz;   
MKL_INT *Bx, *By;  
double *Bnz;
read_mm(strpathB, &Bm, &Bn, &Bnnz, &Bx, &By, &Bnz);

/** construct csr storage for B matrix */
MKL_INT* BJ = (MKL_INT*) mkl_malloc( Bnnz * sizeof( MKL_INT ), 64 );
MKL_INT* BI = (MKL_INT*) mkl_malloc( (Bm+1) * sizeof( MKL_INT ), 64 );
double* Bval = (double*) mkl_malloc( Bnnz * sizeof( double ),  64 );
coo_to_csr(Bm, Bnnz, Bx, By, Bnz, BI, BJ, Bval);    

/** multiply two matrices */
double* Cval, time; 
MKL_INT* CJ; MKL_INT* CI;
mkl_mic_spgemm(Am, An, Annz, Aval, AJ, AI, Bn, Bnnz, Bval, BJ, BI, &Cval, &CJ, &CI, &time);

int i;
for(i=0;i<=Am;i++)AI[i]--;    for(i=0;i<Annz;i++)AJ[i]--;
for(i=0;i<=Bm;i++)BI[i]--;    for(i=0;i<Bnnz;i++)BJ[i]--;
printmm_one(Am, Cval, CJ, CI);

/** In order to write the output C matrix to file, uncomment the following line */
//printfilemm_one(strpathC, Am, Bn, Cval, CJ, CI);

/** run my SpGEMM routine in order to find number of multiply-and-add operations */
long nummult = 0;
csi* xb = (csi*)calloc(Bn, sizeof(csi));
csv* x = (csv*)calloc(Bn, sizeof(csv));
csr* C = csr_multiply(Am, An, Annz, AI, AJ, Aval, Bm, Bn, Bnnz, BI, BJ, Bval, &nummult, xb, x);
double gflop = 2 * (double) nummult / 1e9;

/** print gflop per second and time */
printf("%d\t", nthreads);
printf("%g\t", (gflop/time));
printf("%g\t", time);
printf("%s\t", strpathA);
printf("%s\t", strpathB);
printf("%s\t", strpathC);
printf("\n");

/** free allocated space */
mkl_free(AI);
mkl_free(AJ);
mkl_free(Aval);
mkl_free(BI);
mkl_free(BJ);
mkl_free(Bval);
return 0;
} /* ENDOF main }}}*/

/** Prints matrix in CSR format */
void printmm_one(int m, double* Aval, int* AJ, int* AI){ //{{{

    if (option_print_matrices == OPTION_NOPRINT_MATRICES)
        return;
    int i;
    for(i = 0; i < m; i++) {
        printf("%d: ", i+1);
        int j;
        for(j = AI[i]-1; j < AI[i+1]-1; j++) {
            printf("%d:%g  ", AJ[j], Aval[j]);
        }
        printf("\n");
    }
    printf("\n");
}//}}}

/** Writes matrix in CSR format in to a file using Matrix Market format */
void printfilemm_one(char* file, int m, int n, double* Aval, int* AJ, int* AI){//{{{

    FILE* f = fopen(file, "w");
    if(f == NULL){
        printf("%s %s %d: %s cannot be opened to write matrix\n", __FILE__, __PRETTY_FUNCTION__, __LINE__, file);
        exit(1); 
    }
    int i;
    fprintf(f, "%%%%MatrixMarket matrix coordinate real general\n");
    fprintf(f, "%d %d %d\n", m, n, AI[m]-1);
    for(i = 0; i < m; i++) {
        int j;
        for(j = AI[i]-1; j < AI[i+1]-1; j++) {
            fprintf(f, "%d %d %g\n", i+1, AJ[j], Aval[j]);
        }
    }
    fclose(f);
}//}}}