Commit 50dd3415 authored by Jacob Finkenrath's avatar Jacob Finkenrath
Browse files

Smaller changes in Readme.md

parent 20dda510
......@@ -65,7 +65,7 @@ The equations are solved iteratively using time-marching algorithms, and most of
- Build and Run instructions: [code_saturne/Code_Saturne_Build_Run_5.3_UEABS.pdf](code_saturne/Code_Saturne_Build_Run_5.3_UEABS.pdf)
- Test Case A: https://repository.prace-ri.eu/ueabs/Code_Saturne/2.1/CS_5.3_PRACE_UEABS_CAVITY_13M.tar.gz
- Test Case B: https://repository.prace-ri.eu/ueabs/Code_Saturne/2.1/CS_5.3_PRACE_UEABS_CAVITY_111M.tar.gz
# CP2K <a name="cp2k"></a>
CP2K is a freely available quantum chemistry and solid-state physics software package that can perform atomistic simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems. CP2K provides a general framework for different modelling methods such as DFT using the mixed Gaussian and plane waves approaches GPW and GAPW. Supported theory levels include DFTB, LDA, GGA, MP2, RPA, semi-empirical methods (AM1, PM3, PM6, RM1, MNDO, ...), and classical force fields (AMBER, CHARMM, ...). CP2K can do simulations of molecular dynamics, metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational analysis, core level spectroscopy, energy minimisation, and transition state optimisation using NEB or dimer method.
......@@ -238,10 +238,10 @@ Accelerator-based implementations have been implemented for EXDIG, using off-loa
| **General information** | **Scientific field** | **Language** | **MPI** | **OpenMP** | **GPU** | **LoC** | **Code description** |
|------------------|----------------------|--------------|---------|------------|---------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>[- Bench](https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/r2.2-dev/qcd/part_1) <br>[- Summary](https://repository.prace-ri.eu/git/UEABS/ueabs/-/blob/r2.2-dev/qcd/part_1/README) | lattice QuantumChromodynamics - Kernel 1 | C | yes | yes | yes (CUDA) | -- | Based on UEABS kernel E, CG solver using the Wilson Dirac operator. targetDP model has been used to allow the benchmark to utilise NVIDIA GPUs, Intel Xeon Phi manycore CPUs and traditional multi-core CPU. [Test case A - 8x64x64x64] Small problem size suitable to run on one KNC. Conjugate Gradient solver involving Wilson Dirac stencil. Domain Decomposition, Memory bandwidth, strong scaling, MPI latency. |
| <br>[- Source](https://lattice.github.io/quda/) <br>[- Bench](https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/r2.2-dev/qcd/part_2) <br>[- Summary](https://repository.prace-ri.eu/git/UEABS/ueabs/-/blob/r2.2-dev/qcd/part_2/README) | lattice QuantumChromodynamics - Kernel 2 -QUDA | C++ | yes | yes | yes (CUDA) | -- | The library QUDA is based on CUDA and optimize for running on NVIDIA GPUs. [Test case A - 96x32x32x32] Small problem size. Conjugate Gradient solver involving Wilson Dirac stencil. Domain Decomposition, Memory bandwidth, strong scaling, MPI latency. [Test case B - 126x64x64x64] Moderate problem size. Conjugate Gradient solver involving Wilson Dirac stencil. Bandwidth bounded |
| <br>[- Source](http://jeffersonlab.github.io/qphix/) <br>[- Bench](https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/r2.2-dev/qcd/part_2) <br>[- Summary](https://repository.prace-ri.eu/git/UEABS/ueabs/-/blob/r2.2-dev/qcd/part_2/README) | lattice QuantumChromodynamics - Kernel 2 - QPHIX | C++ | yes | yes | no | -- | The QPhix library consists of routines which are optimize to use INTEL intrinsic functions of multiple vector length, including optimized routines for KNC and KNL [Test case A - 96x32x32x32] Small problem size. Conjugate Gradient solver involving Wilson Dirac stencil. Domain Decomposition, Memory bandwidth, strong scaling, MPI latency. [Test case B - 126x64x64x64] Moderate problem size. Conjugate Gradient solver involving Wilson Dirac stencil. Bandwidth bounded |
| <br>[- Source](https://repository.prace-ri.eu/ueabs/QCD/1.3/QCD_Source_TestCaseA.tar.gz) <br>[- Bench](https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/r2.2-dev/qcd/part_cpu) <br>[- Summary](https://repository.prace-ri.eu/git/UEABS/ueabs/-/blob/r2.2-dev/qcd/part_cpu/README) | lattice QuantumChromodynamics - legacy UEABS Kernels | C/Fortran | yes | yes/no | No | -- | Legacy UEABS QCD benchmark kernels are based on 5 different Benchmark applications which are used by the European Lattice QCD community (see doc for more details). |
| <br>[- Bench](https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/r2.2-dev/qcd/part_1) <br>[- Summary](https://repository.prace-ri.eu/git/UEABS/ueabs/-/blob/r2.2-dev/qcd/part_1/README) | lattice QuantumChromodynamics - Part 1 | C | yes | yes | yes (CUDA) | -- | Accelerator enabled kernel E of UEABS QCD CPU part using targetDP model. Test case A - 8x64x64x64. Conjugate Gradient solver involving Wilson Dirac stencil. Domain Decomposition, Memory bandwidth, strong scaling, MPI latency. |
| <br>[- Source](https://lattice.github.io/quda/) <br>[- Bench](https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/r2.2-dev/qcd/part_2) <br>[- Summary](https://repository.prace-ri.eu/git/UEABS/ueabs/-/blob/r2.2-dev/qcd/part_2/README) | lattice QuantumChromodynamics - Part 2 - QUDA | C++ | yes | yes | yes (CUDA) | -- | Part 2: GPU is using a QUDA kernel for running on NVIDIA GPUs. [Test case A - 96x32x32x32] Small problem size. CG solver. Domain Decomposition, Memory bandwidth, strong scaling, MPI latency. [Test case B - 126x64x64x64] Moderate problem size. CG solver on Wilson Dirac stencil. Bandwidth bounded |
| <br>[- Source](http://jeffersonlab.github.io/qphix/) <br>[- Bench](https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/r2.2-dev/qcd/part_2) <br>[- Summary](https://repository.prace-ri.eu/git/UEABS/ueabs/-/blob/r2.2-dev/qcd/part_2/README) | lattice QuantumChromodynamics - Part 2 - QPHIX | C++ | yes | yes | no | -- | Part 2: Xeon is using a QPhiX kernel which is optimize to run on x86, in particular Intel Xeon (Phi). [Test case A - 96x32x32x32] Small problem size. CG solver involving Wilson Dirac stencil. Domain Decomposition, Memory bandwidth, strong scaling, MPI latency. [Test case B - 126x64x64x64] Moderate problem size. CG solver on Wilson Dirac stencil. Bandwidth bounded |
| <br>[- Source](https://repository.prace-ri.eu/ueabs/QCD/1.3/QCD_Source_TestCaseA.tar.gz) <br>[- Bench](https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/r2.2-dev/qcd/part_cpu) <br>[- Summary](https://repository.prace-ri.eu/git/UEABS/ueabs/-/blob/r2.2-dev/qcd/part_cpu/README) | lattice QuantumChromodynamics - CPU Part - legacy UEABS | C/Fortran | yes | yes/no | No | -- | CPU part based on UEABS QCD CPU part (legacy) benchmark kernels (last update 2017). Based on 5 different Benchmark applications representative for the European Lattice QCD community (see doc for more details). |
# Quantum Espresso <a name="espresso"></a>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment