Commit 3133af34 authored by Cedric Jourdain's avatar Cedric Jourdain 🐵
Browse files

Update -> Specfem3D

parent 7c73d399
......@@ -312,19 +312,6 @@ The SHOC benchmark suite currently contains benchmark programs, categoried based
# SPECFEM3D <a name="specfem3d"></a>
The software package SPECFEM3D simulates three-dimensional global and regional seismic wave propagation based upon the spectral-element method (SEM). All SPECFEM3D_GLOBE software is written in Fortran90 with full portability in mind, and conforms strictly to the Fortran95 standard. It uses no obsolete or obsolescent features of Fortran77. The package uses parallel programming based upon the Message Passing Interface (MPI).
The SEM was originally developed in computational fluid dynamics and has been successfully adapted to address problems in seismic wave propagation. It is a continuous Galerkin technique, which can easily be made discontinuous; it is then close to a particular case of the discontinuous Galerkin technique, with optimized efficiency because of its tensorized basis functions. In particular, it can accurately handle very distorted mesh elements. It has very good accuracy and convergence properties. The spectral element approach admits spectral rates of convergence and allows exploiting hp-convergence schemes. It is also very well suited to parallel implementation on very large supercomputers as well as on clusters of GPU accelerating graphics cards. Tensor products inside each element can be optimized to reach very high efficiency, and mesh point and element numbering can be optimized to reduce processor cache misses and improve cache reuse. The SEM can also handle triangular (in 2D) or tetrahedral (3D) elements as well as mixed meshes, although with increased cost and reduced accuracy in these elements, as in the discontinuous Galerkin method.
In many geological models in the context of seismic wave propagation studies (except for instance for fault dynamic rupture studies, in which very high frequencies of supershear rupture need to be modeled near the fault, a continuous formulation is sufficient because material property contrasts are not drastic and thus conforming mesh doubling bricks can efficiently handle mesh size variations. This is particularly true at the scale of the full Earth. Effects due to lateral variations in compressional-wave speed, shear-wave speed, density, a 3D crustal model, ellipticity, topography and bathyletry, the oceans, rotation, and self-gravitation are included. The package can accommodate full 21-parameter anisotropy as well as lateral variations in attenuation. Adjoint capabilities and finite-frequency kernel simulations are also included.
- Web site:
- Code download:
- Build instructions:
- Test Case A:
- Test Case B:
- Run instructions:
| **General information** | **Scientific field** | **Language** | **MPI** | **OpenMP** | **GPU** | **LoC** | **Code description** |
| [- Website]( <br>[- Source]( <br>[- Bench]( <br>[- Summary]( | Geodynamics | Fortran | yes | yes | Yes (CUDA) | 140000 | The software package SPECFEM3D simulates three-dimensional global and regional seismic wave propagation based upon the spectral-element method (SEM). |
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment